Parallel solution of symmetric positive definite systems based on decomposition into overlapping blocks
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 4, pp. 515-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_4_a0,
     author = {I. E. Kaporin and I. N. Kon'shin},
     title = {Parallel solution of symmetric positive definite systems based on decomposition into overlapping blocks},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {515--528},
     year = {2001},
     volume = {41},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_4_a0/}
}
TY  - JOUR
AU  - I. E. Kaporin
AU  - I. N. Kon'shin
TI  - Parallel solution of symmetric positive definite systems based on decomposition into overlapping blocks
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 515
EP  - 528
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_4_a0/
LA  - ru
ID  - ZVMMF_2001_41_4_a0
ER  - 
%0 Journal Article
%A I. E. Kaporin
%A I. N. Kon'shin
%T Parallel solution of symmetric positive definite systems based on decomposition into overlapping blocks
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 515-528
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_4_a0/
%G ru
%F ZVMMF_2001_41_4_a0
I. E. Kaporin; I. N. Kon'shin. Parallel solution of symmetric positive definite systems based on decomposition into overlapping blocks. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 4, pp. 515-528. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_4_a0/

[1] Kaporin I. E., “O predobuslovlivanii i rasparallelivanii metoda sopryazhennykh gradientov”: Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1990, 343–355 | MR

[2] Kaporin I. E., “New convergence results and preconditioning strategies for the conjugate gradient method”, Numer. Linear Algebra and Appls., 1:2 (1994), 179–210 | DOI | MR | Zbl

[3] Kaporin I. E., “High quality preconditioning of a general symmetric positive definite matrix based on its $U^{\scriptscriptstyle\text{T}}U+U^{\scriptscriptstyle\text{T}}R+R^{\scriptscriptstyle\text{T}}U$-decomposition”, Numer. Linear Algebra and Appl., 5:5 (1998), 484–509 | MR

[4] Axelsson O., Lindskog G., “On the rate of convergence of the preconditioned gradient methods”, Numer. Math., 48:5 (1986), 499–523 | DOI | MR | Zbl

[5] Axelsson O., “A class of iterative methods for finite element equations”, Computer Meth. Appl. Mech. Engng., 9:2 (1976), 123–137 | DOI | MR | Zbl

[6] Kaporin I. E., “Explicitly preconditioned conjugate gradient method for the solituon of unsymmetric linear systems”, Internal. J. Comput. Math., 40 (1992), 169–187 | DOI

[7] Axelsson O., Iterative solution methods, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[8] Kaporin I. E., “O predobuslovlivanii metoda sopryazhennykh gradientov pri reshenii diskretnykh analogov differentsialnykh zadach”, Differents. ur-niya, 26:7 (1990), 1225–1236 | MR | Zbl

[9] Kaporin I. E., “Otsenki granits spektra dvukhstoronnikh yavnykh predobuslovlivanii”, Vestn. MGU. Vyp. 15. Vychisl. matem. i kibernetika, 1993, no. 2, 28–42 | MR

[10] Tismenetsky M., “A new preconditioning technique for solving large sparse linear systems”, Linear Algebra and Appls., 154–156 (1991), 331–353 | DOI | MR | Zbl

[11] O'Leary D. P., “The block conjugate gradient algorithm and related methods”, Linear Algebra and Appls., 29 (1980), 293–322 | DOI | MR

[12] Kaporin I. E., Konshin I. N., “Parallel solution of large sparse SPD linear systems based on overlapping domain decomposition”, Parallel Comput. Technol., Lect. Notes in Comput. Sci., 1662, Springer, Berlin etc., 1999, 436–445

[13] Benzi M., Kouhia R., Tuma M., An assessment of some peconditioning techniques in shell problems, Techn. Rept LA-UR-97-3892, Los Alamos Nat. Lab., Los Alamos, NM, 1997

[14] Karypis G., Kumar V., Multilevel $k$-way hypergraph partitioning, Techn. Rept 98-036, Dept. Comput. Sci. Engng., Army HPC Res. Center, Univ. Minnesota, MN, 1998