@article{ZVMMF_2001_41_3_a7,
author = {A. Yu. Shcheglov},
title = {A method for approximate solution in $C^2$ of a hyperbolic equation with {Lipschitz} nonlinearity},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {420--435},
year = {2001},
volume = {41},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a7/}
}
TY - JOUR AU - A. Yu. Shcheglov TI - A method for approximate solution in $C^2$ of a hyperbolic equation with Lipschitz nonlinearity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 420 EP - 435 VL - 41 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a7/ LA - ru ID - ZVMMF_2001_41_3_a7 ER -
%0 Journal Article %A A. Yu. Shcheglov %T A method for approximate solution in $C^2$ of a hyperbolic equation with Lipschitz nonlinearity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 420-435 %V 41 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a7/ %G ru %F ZVMMF_2001_41_3_a7
A. Yu. Shcheglov. A method for approximate solution in $C^2$ of a hyperbolic equation with Lipschitz nonlinearity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 3, pp. 420-435. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a7/
[1] Morz F., Kolebaniya i zvuk, Gostekhteorizdat, M.–L., 1949
[2] Lykov A. V., Teoriya teploprovodnosti, Gostekhteoretizdat, M., 1952
[3] Alifanov O. M., Identifikatsiya protsessov teploobmena letatelnykh apparatov (Vvedenie v teoriyu obratnykh zadach), Mashinostr., M., 1979
[4] Lattés R., Lions J.-L., Mèthode de quasi-rèversibilité et applications, Dunod, Paris, 1967 | MR
[5] Elden L., “Hyperbolic approximations for a Cauchy problem for the heat equation”, J. Inverse Problem, 4:1 (1988), 59–70 | DOI | MR | Zbl
[6] Scheglov A. Yu., “Metod priblizhennogo resheniya odnoi obratnoi zadachi dlya uravneniya teploprovodnosti”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 904–916 | MR
[7] Hadamard J., Le problème de Cauchy et les équations aux derivees partielles linéares hyperboliques, Hermann, Paris, 1932
[8] Friedrichs K. O., Lewy H., “Über die Eindeutigkeit und das Abhängigkeitsgebiet der Lösungen beim Anfargswertproblem linearer hyperbolischer Differentialgleichungen”, Math. Ann., 98:2 (1927), 192–204 | MR | Zbl
[9] Schauder J., “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Zeit., 38:2 (1934), 257–282 | DOI | MR
[10] Petrowsky I. G., “Über die Cauchysche Problem für Systeme von partiellen Differentialgleichungen”, Matem. sb., 2:5 (1937), 815–870 | Zbl
[11] Petrovskii I. G., “O probleme Cauchy dlya sistemy lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi v oblasti neanaliticheskikh funktsii”, Byul. MGU. Ser. matem. i mekhan., 1:7 (1938), 1–72
[12] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, 1950
[13] Sobolev S. L., Sur les equations aux dèrivées partielles hyperboliques nonlinéaires, Edizione Cremoneze, Roma, 1961 | Zbl
[14] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 12:3 (1957), 3–73 | MR
[15] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[16] Kruzhkov S. N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, II”, Matem. sb., 72:1 (1967), 108–134 | Zbl
[17] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977
[18] Jörgens K., “Das Anfangswertproblem im Grössen für eine Klasse nichtlinearer Wellengleichungen”, Math. Zeit., 77:4 (1961), 295–308 | DOI | MR
[19] Mizohata S., Yamaguti M., “Mixed problem for some semi-linear wave equation”, J. Math. Kyoto Univ., 27:1 (1962), 61–78 | MR
[20] Bruhat Y., “Un théorème d'unicité de solutions faibles d'équations hyperboliques”, C. R. acad. Sci. Paris, 1964, no. 258, 3949–3951 | MR | Zbl
[21] Brezis H., “Periodic solutions of nonlinear vibrating strings and duality principles”, Bull. Amer. Math. Soc., 8:3 (1983), 409–426 | DOI | MR | Zbl
[22] Plotnikov P. I., Yungerman L. N., “Periodicheskie resheniya slabolineinogo volnovogo uravneniya s irratsionalnym otnosheniem perioda k dline intervala”, Differents. ur-niya, 24:9 (1988), 1599–1607 | MR | Zbl
[23] Mizohata K., Ukai S., “The global existence of small amplitude solutions to the nonlinear acoustic wave equation”, J. Math. Kyoto Univ., 33:2 (1993), 505–522 | MR | Zbl
[24] Lyashenko A. A., Smiley M. W., “The Dirichlet problem for the semilinear vibrating string equation in a class of domains with corner points”, J. Math. Analys. and Appl., 189:3 (1995), 872–896 | DOI | MR | Zbl
[25] Cannon J. R., DuChateau P., “An inverse problem for an unknown source term in a wave equation”, SIAM J. Appl. Math., 43:3 (1983), 553–564 | DOI | MR | Zbl
[26] Denisov A. M., “Edinstvennost resheniya nekotorykh obratnykh zadach neravnovesnoi dinamiki sorbtsii”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1986, no. 2, 25–30 | MR | Zbl
[27] Grasselli M., “Local existence and uniqueness for a quasilinear hyperbolic inverse problem”, J. Appl. Anal., 32:1 (1989), 15–30 | DOI | MR | Zbl
[28] Guo Bao Qu, Wang Jian Tao, “An inverse problem for a one-dimensional semilinear hyperbolic equation with an unknown source”, J. Harbin Inst. Technol., 1989, no. 4, 14–20 | MR | Zbl
[29] Lorenzi A., Paparoni E., “An inverse problem arising in the theory of absorption”, J. Appl. Analys., 36:2 (1990), 249–263 | DOI | MR | Zbl
[30] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994
[31] Denisov A. M., “Determination of a nonlinear coefficient in a hyperbolic equation for the Goursat problem”, J. Inverse Ill-Posed Problems, 6:4 (1998), 327–334 | DOI | MR | Zbl
[32] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Gostekhteoretizdat, M., 1953