Multiple one-dimensional and spherically symmetric self-similar solutions to the nonlinear wave equation for the Higgs field in the de Sitter space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 3, pp. 467-488 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_3_a12,
     author = {A. L. Duischko and N. B. Konyukhova},
     title = {Multiple one-dimensional and spherically symmetric self-similar solutions to the nonlinear wave equation for the {Higgs} field in the de {Sitter} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {467--488},
     year = {2001},
     volume = {41},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a12/}
}
TY  - JOUR
AU  - A. L. Duischko
AU  - N. B. Konyukhova
TI  - Multiple one-dimensional and spherically symmetric self-similar solutions to the nonlinear wave equation for the Higgs field in the de Sitter space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 467
EP  - 488
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a12/
LA  - ru
ID  - ZVMMF_2001_41_3_a12
ER  - 
%0 Journal Article
%A A. L. Duischko
%A N. B. Konyukhova
%T Multiple one-dimensional and spherically symmetric self-similar solutions to the nonlinear wave equation for the Higgs field in the de Sitter space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 467-488
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a12/
%G ru
%F ZVMMF_2001_41_3_a12
A. L. Duischko; N. B. Konyukhova. Multiple one-dimensional and spherically symmetric self-similar solutions to the nonlinear wave equation for the Higgs field in the de Sitter space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 3, pp. 467-488. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_3_a12/

[1] Linde A. D., Fizika elementarnykh chastits i inflyatsionnaya kosmologiya, Nauka, M., 1991 | MR

[2] Dolgov A. D., Zeldovich Ya. B., Sazhin M. V., Kosmologiya rannei Vselennoi, Izd-vo MGU, M., 1988

[3] Rubakov V. A., Klassicheskie kalibrovochnye polya, Editorial URSS, M., 1999 | MR

[4] Basu R., Vilenkin A., “Evolution of topological defects during inflation”, Phys. Rev. D, 50:12 (1994), 7150–7153 | DOI

[5] Dyshko A. L., Konyukhova N. B., “Avtomodelnye resheniya nelineinogo volnovogo uravneniya dlya polya Khiggsa v prostranstve de Sittera”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 124–140 | MR | Zbl

[6] Dyshko A. L., Konyukhova N. B., Voronov N. A., “Automodelling solutions of the Higgs-field nonlinear wave equation in the de Sitter space”, Comput. Phys. Communs., 126:1–2 (2000), 57–62 | DOI | Zbl

[7] Voronov N. A., Dyshko A. L., Kobzarev I. Yu., Konyukhova N. B., “Dinamika puzyrei v teorii polya s dvumya vyrozhdennymi vakuumami”, Yadernaya fiz., 60:1 (1997), 140–149 | MR

[8] Voronov N. A., Dyshko A. L., Konyukhova N. B., Staroverova I. B., “O nekotorykh nelineinykh singulyarnykh zadachakh v modelyakh relyativistskoi kosmologii”, Comput. Modelling and Comput. Phys., Proc. 9-th Internat. Conf. (Sept. 16–21, 1996), 304–310; D5, 11-97-112, Dubna, 1997

[9] Voronov N. A., Dyshko A. L., Konyukhova N. B., Staroverova I. B., “O nelineinykh singulyarnykh zadachakh v relyativistskoi kosmologii. II: Pole Khiggsa v prostranstve de Sittera”, Zh. vychisl. matem. i matem. fiz., 37:12 (1997), 1506–1519 | MR | Zbl

[10] Belova T. I., Voronov N. A., “Evolyutsiya puzyrya v teorii s vyrozhdennym vakuumom v prostranstvakh Fridmana i de Sittera”, Pisma v ZhETF, 61:5 (1995), 337–341

[11] Belova T. I., Kudryavtsev A. E., “Solitony i ikh vzaimodeistviya v klassicheskoi teorii polya”, Uspekhi fiz. nauk, 167:4 (1997), 377–406

[12] Zeldovich Ya. B., Kobzarev I. Yu., Okun L. B., “Kosmologicheskie sledstviya spontannogo narusheniya diskretnoi simmetrii”, Zh. eksperim. i teor. fiz., 67:1(7) (1974), 3–11

[13] Voronov N. A., Kobzarev I. Yu., Konyukhova N. B., “O vozmozhnosti suschestvovaniya mezonov novogo tipa”, Pisma v ZhETF, 22:11 (1975), 590–594

[14] Belova T. I., Voronov N. A., Konyukhova N. B., Pariiskii B. S., “Chislennye issledovaniya ustoichivosti chastitsepodobnykh reshenii uravnenii skalyarnogo polya”, Zh. vychisl. matem. i matem. fiz., 21:1 (1981), 89–109 | MR

[15] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[16] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:3 (1983), 629–645 | MR | Zbl

[17] Rachůnková I., “Multiple solutions of nonlinear boundary value problems and topological degree”, Equadiff 9 Proc., Masaryk Univ., Brno, 1997, 147–158

[18] Ryder G. H., “Boundary value problems for a class of nonlinear differential equations”, Pacific J. Math., 22:3 (1967), 477–503 | MR | Zbl

[19] Belova T. I., Voronov N. A., Kobzarev I. Yu., Konyukhova N. B., “Chastitsepodobnye resheniya skalyarnogo uravneniya Khiggsa”, Zh. eksperim. i teor. fiz., 73:5(11) (1977), 1611–1629

[20] Vasil'eva A. B., Butusov V. F., Kalachev L. V., The boundary function method for singular perturbation problems, SIAM, Philadelphia, 1995 | MR

[21] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[22] Voronov N. A., Dyshko A. L., Konyukhova N. B., Staroverova I. B., “O nelineinykh singulyarnykh zadachakh v relyativistskoi kosmologii. I: Pole Khiggsa v prostranstvakh Minkovskogo i Fridmana”, Zh. vychisl. matem. i matem. fiz., 37:11 (1997), 1345–1361 | MR | Zbl