@article{ZVMMF_2001_41_2_a2,
author = {V. I. Pinchukov},
title = {A monotone nonlocal cubic spline},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {200--206},
year = {2001},
volume = {41},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a2/}
}
V. I. Pinchukov. A monotone nonlocal cubic spline. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 2, pp. 200-206. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a2/
[1] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR
[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[3] Grebennikov A. I., Metod splainov i reshenie nekorrektnykh zadach teorii priblizhenii, Izd-vo MGU, M., 1983 | MR | Zbl
[4] Kvasov B. I., “Shape preserving $\mathrm{C2}$ spline interpolation”, Proc. Sec. Asian Math. Conf. (1995), World Scient. Publ. Co. Pte. Ltd., Singapore, 1998, 430–439 | MR
[5] Delbourgo R., Gregory J. A., “Shape preserving piecewise rational interpolation”, SIAM J. Numer. Sci. and Statist. Comput., 6:4 (1985), 967–976 | DOI | MR | Zbl
[6] Harten A., Engquist B., Osher S., Chakravarthy S., “Uniformly high-order essentially non-oscillatory schemes, III”, J. Comput. Phys., 71 (1987), 279–309 | DOI | MR
[7] Jiang G., Shu C.-W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[8] Sod G. A., Numerical methods in fluid dynamics, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl
[9] Pinchukov V. I., “O postroenii monotonnykh skhem tipa prediktor-korrektor proizvolnogo poryadka approksimatsii”, Matem. modelirovanie, 3:9 (1991), 95–104 | MR
[10] Pinchukov V. I., “ENO-modifikatsiya nelokalnogo kubicheskogo splaina na ravnomernoi setke”, Vychisl. tekhnologii, 2000, no. 6 | MR