Application of dynamically adaptive grids to the analysis of flows with a mutiscale structure
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 2, pp. 311-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_2_a11,
     author = {A. N. Gilmanov},
     title = {Application of dynamically adaptive grids to the analysis of flows with a mutiscale structure},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {311--326},
     year = {2001},
     volume = {41},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a11/}
}
TY  - JOUR
AU  - A. N. Gilmanov
TI  - Application of dynamically adaptive grids to the analysis of flows with a mutiscale structure
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 311
EP  - 326
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a11/
LA  - ru
ID  - ZVMMF_2001_41_2_a11
ER  - 
%0 Journal Article
%A A. N. Gilmanov
%T Application of dynamically adaptive grids to the analysis of flows with a mutiscale structure
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 311-326
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a11/
%G ru
%F ZVMMF_2001_41_2_a11
A. N. Gilmanov. Application of dynamically adaptive grids to the analysis of flows with a mutiscale structure. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 2, pp. 311-326. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a11/

[1] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987 | MR

[2] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[3] Dwyer H. A., “Grid adaption for problems in fluid dynamics”, AIAA Journal, 22:12 (1984), 1705–1712 | DOI | Zbl

[4] Godunov C. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[5] Liseikin V. D., Yanenko N. N., “Metod podvizhnykh koordinat v gazovoi dinamike”, Chisl. metody mekhan. sploshnoi sredy, 7, no. 2, VTs SO AN SSSR, Novosibirsk, 1976, 75–82

[6] Mazhukin V. I., Samarskii A. A., Kastelyanos O., Shapranov A. V., “Metod dinamicheskoi adaptatsii dlya nestatsionarnykh zadach s bolshimi gradientami”, Matem. modelirovanie, 5:4 (1993), 32–56 | MR | Zbl

[7] Sidorov A. F., Ushakova O. V., “Ob odnom algoritme postroeniya optimalnykh raznostnykh setok i ego polozheniyakh”, Chisl. metody mekhan. sploshnoi sredy, 18, no. 5, ITPM SO AN SSSR, Novosibirsk, 1985, 101–115 | MR

[8] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh prilozheniya k problemam aerogidrodinamiki, Nauka, M., 1990 | MR

[9] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[10] Berger M. J., Oliger J., “Adaptive mesh refinement for hyperbolic partial differential equations”, J. Comput. Phys., 53:3 (1984), 484–512 | DOI | MR | Zbl

[11] Kallinderis J. G., Baron J. R., Adaption methods for a new Navier-Stokes algorithm, AIAA Paper No 1167, 1987

[12] Voinovich P. A., Sharov D. M., “Modelirovanie razryvnykh techenii gaza na nestrukturirovannykh setkakh. 2: Nestatsionarnaya lokalnaya adaptatsiya setki”, Matem. modelirovanie, 5:7 (1993), 101–112 | MR

[13] Liseikin V. D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 3–41 | MR

[14] Vyaznikov K., Tishkin V. F., Favorskii A. P., “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 1:5 (1989), 68–78 | MR

[15] Ganzhelo A. N., Kraiko A. N., Makarov V. E., Tillyaeva N. I., “O povyshenii tochnosti chislennogo resheniya gazodinamicheskikh zadach”, Sovremennye probl. aerodinamiki, Mashinostr., M., 1987, 87–103

[16] Ivanov M. Ya., Krupa V. G., Nigmatullin R. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya integrirovaniya uravnenii Nave-Stoksa”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 888–901 | MR | Zbl

[17] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[18] Kopchenov V. I., Kraiko A. N., “Monotonnaya raznostnaya skhema vtorogo poryadka dlya giperbolicheskikh sistem s dvumya nezavisimymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 848–859 | MR | Zbl

[19] Rodionov A. V., “Povyshenie poryadka approksimatsii skhemy S. K. Godunova”, Zh. vychisl. matem. i matem. fiz., 27:12 (1987), 1853–1860 | MR | Zbl

[20] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper No 0363, 1985

[21] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[22] Van Leer B., “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | MR

[23] Ershov S. V., “Monotonnaya ENO-skhema povyshennoi tochnosti dlya integrirovaniya uravnenii Eilera i Nave-Stoksa”, Matem. modelirovanie, 6:11 (1994), 63–75 | MR | Zbl

[24] Chakravarthy S. R., Harten A., Osher S., Essentially non-oscillatory shock-capturing schemes of arbitrary-high accuracy, AIAA Paper No 0339, 1986

[25] Yang H., “An artifical compression method for ENO schemes: The slope modification method”, J. Comput. Phys., 89:1 (1990), 125–160 | DOI | MR | Zbl

[26] Shu C. W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl

[27] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[28] Voinovich P. A., Sharov D. M., “Modelirovanie razryvnykh techenii gaza na nestrukturirovannykh setkakh. 1: Postroenie kvazimonotonnoi skhemy povyshennogo poryadka approksimatsii”, Matem. modelirovanie, 5:7 (1993), 86–100 | MR

[29] Eberhardt S., Palmer G. E., A two-dimensional TVD scheme for inviscid high Mach number flows in chemical equilibrium, AIAA Paper No 1284, 1986

[30] Moon Y. J., Yee H. C., Numerical simulation by TVD schemes of complex shock reflections from airfoils at high angle of attack, AIAA Paper No 0350, 1987

[31] Ota D. K., Chakravarthy S. R., An equilibrium air Navier-Stokes code for hypersonic flows, AIAA Paper No 0419, 1988

[32] Takakura Y., Ishiguro T., Ogawa S., “On TVD difference schemes for the three-dimensional Euler equations in general co-ordinates”, Int. J. Numer. Meth. in Fluids, 9 (1989), 1011–1024 | DOI

[33] Wang J. C. T., Widkopf G. F., “Numerical simulation of blast flowfields using a high resolution TVD finite volume scheme”, Comput. and Fluids, 18:1 (1990), 103–137 | DOI

[34] Young D. P., Melvin R. G., Bieterman M. B. et al., “A locally refined rectangular grid finite element method: Application to computational fluid dynamics and computational physics”, J. Comput. Phys., 92:1 (1991), 1–66 | DOI | MR | Zbl

[35] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidrodinamika i teploobmen, v. 1, 2, Mir, M., 1990 | Zbl

[36] Yee H. C., Klopfer G. H., Montagne J. L., “High resolution shock-capturing schemes for inviscid and viscid hypersonic flows”, J. Comput. Phys., 88:1 (1990), 31–61 | DOI | MR | Zbl

[37] Munz C. D., “In the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77:1 (1988), 18–39 | DOI | MR | Zbl

[38] Yee H. C., “Construction of explicit and implicit symmetric TVD schemes and their applications”, J. Comput. Phys., 68:1 (1987), 151–179 | DOI | MR | Zbl

[39] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[40] Godunov C. K., Ryabenkii B. C., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1973 | Zbl

[41] Kulachkova N. A., “Ob odnom podkhode k postroeniyu geometricheski i fizicheski adaptivnykh konechno-raznostnykh setok”, Vzaimodeistvie obolochek so sredoi, 20, Kazansk. fiz.-tekhn. in-t, Kazan, 1987, 223–230

[42] Gilmanov A. N., Kulachkova N. A., “Chislennoe issledovanie dvumernykh techenii gaza so skachkami metodom TVD na fizicheski adaptivnykh setkakh”, Matem. modelirovanie, 7:3 (1995), 97–106 | MR

[43] Ivanenko S. A., “O postroenii adaptivnykh setok i setok na poverkhnostyakh”, Vopr. atomnoi nauki i tekhn. Ser. Matem. modelirovanie fiz. protsessov, 1993, no. 4, 47–53

[44] Fedorenko R. P., “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 559–564 | MR | Zbl

[45] Brandt A., Dinar N., “Multigrid solution to elliptic flow problems”, Numer. Meth. for PDE's, Acad. Press, New York, 1979, 53–147 | MR

[46] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[47] Hakkinen R. J., Greber I., Trilling L., Abarbanel S., The interaction of an oblique shock wave with a laminar boundary layer, NASA Memo 2-18-59W, 1959, 15 pp.

[48] Korren B., “Upwind discretization oil the steady Navier-Stokes equations”, Int. J. Numer. Meth. in Fluids, 11, 99–117 | DOI

[49] Krasnov N. F., Koshevoi B. H., Kalugin V. T., Aerodinamika otryvnykh techenii, Vyssh. shkola, M., 1988