The diagonal transfer method ($TS$ algorithm) for five-point equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 2, pp. 186-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_2_a1,
     author = {V. P. Il'in and V. L. Nef\"edov},
     title = {The diagonal transfer method ($TS$ algorithm) for five-point equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {186--199},
     year = {2001},
     volume = {41},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a1/}
}
TY  - JOUR
AU  - V. P. Il'in
AU  - V. L. Nefëdov
TI  - The diagonal transfer method ($TS$ algorithm) for five-point equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 186
EP  - 199
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a1/
LA  - ru
ID  - ZVMMF_2001_41_2_a1
ER  - 
%0 Journal Article
%A V. P. Il'in
%A V. L. Nefëdov
%T The diagonal transfer method ($TS$ algorithm) for five-point equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 186-199
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a1/
%G ru
%F ZVMMF_2001_41_2_a1
V. P. Il'in; V. L. Nefëdov. The diagonal transfer method ($TS$ algorithm) for five-point equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 2, pp. 186-199. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_2_a1/

[1] Ilin V. P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Fizmatgiz, M., 1995 | MR

[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[3] Ilin V. P., Sander S. A., ““Elektrotekhnicheskii” metod resheniya sistem setochnykh uravnenii”, Avtometriya, 1987, no. 4, 52–59

[4] Ilin V. P., Sander S. A., “Metod perenosa diagonalnoi svyazi dlya resheniya sistem pyatitochechnykh uravnenii”, Dokl. AN SSSR, 229:2 (1988), 277–280 | MR

[5] Sestroretskii B. V., “Vozmozhnosti pryamochislennogo resheniya kraevykh zadach na osnove metoda impedansnogo analoga elektromagnitnogo prostranstva (IAEP)”, Vopr. radioelektroniki. Ser. obschetekhn., 1976, no. 2, 113–128

[6] Bank R. E., Rose D. J., “Marching algorithms for elliptic boundary value problems. I: The constant coefficient case”, SIAM J. Numer. Analys., 14:5 (1977), 792–829 | DOI | MR | Zbl

[7] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR

[8] Ilin V. P., Karnachuk V. I., Larin M. R., “Drevovidnyi podkhod k organizatsii struktury dannykh dlya razlozheniya Kholesskogo”, Zh. vychisl. matem. i matem. fiz., 34:12 (1994), 1747–1756 | MR

[9] Ilin V. P., Kuznetsov Yu. I., Trekhdiagonalnye matritsy i ikh prilozheniya, Nauka, M., 1985 | MR

[10] Ilin V. P., “Pryamoi analiz ustoichivosti metoda progonki”, Aktualnye probl. vychisl. matem. i matem. modelirovaniya, Nauka, Novosibirsk, 1985, 189–200

[11] Larin M. R., Shirin A. V., “Parallelnyi variant kross-metoda dlya resheniya sistem setochnykh uravnenii”, Vychisl. matem., 3, VTs SO RAN, Novosibirsk, 1995, 74–92