@article{ZVMMF_2001_41_12_a3,
author = {A. V. Razgulin},
title = {Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1844--1856},
year = {2001},
volume = {41},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/}
}
TY - JOUR AU - A. V. Razgulin TI - Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 1844 EP - 1856 VL - 41 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/ LA - ru ID - ZVMMF_2001_41_12_a3 ER -
%0 Journal Article %A A. V. Razgulin %T Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 1844-1856 %V 41 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/ %G ru %F ZVMMF_2001_41_12_a3
A. V. Razgulin. Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 12, pp. 1844-1856. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/
[1] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu. et al., “Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Optimizat Soc. America, 9:1 (1992), 78–90 | DOI
[2] Vorontsov M. A., Iroshnikov N. G., Abernathy R. L., “Diffractive patterns in a nonlinear optical system with field rotation”, Chaos, Solitons and Fractals, 4 (1994), 1701–1716 | DOI | Zbl
[3] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:1 (1993), 69–80 | MR | Zbl
[4] Skubachevskii A. L., “O nekotorykh svoistvakh ellipticheskikh i parabolicheskikh funktsionalno-differentsialnykh uravnenii”, Uspekhi matem. nauk, 51:1(307) (1996), 169–170 | MR
[5] Razgulin A. V., “Ob odnom klasse funktsionalno-differentsialnykh parabolicheskikh uravnenii nelineinoi optiki”, Differents. ur-niya, 36:3 (2000), 400–407 | MR | Zbl
[6] Potapov M. M., “Uravnenie nelineinoi optiki s preobrazovaniyami prostranstvennoi nezavisimoi peremennoi v roli upravlyayuschikh vozdeistvii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1997, no. 3, 13–16 | MR | Zbl
[7] Razgulin A. V., “Localized and periodic patterns in nonlinear optical system with controlled transforms of spatial arguments”, ICONO' 98: Nonlinear Optical Phenomena in Inform. Technol., Proc. SPIE, 3733, 211–217
[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl
[9] Tolstov G. P., Mera i integral, Nauka, M., 1976 | MR | Zbl
[10] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR
[11] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(\mathcal{Q}_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1980, no. 1, 27–35 | MR | Zbl
[12] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl
[13] Potapov M. M., “Ob approksimatsii zadach optimizatsii s gladkimi dopustimymi upravleniyami pri nalichii ogranichenii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1983, no. 4, 4–8