Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 12, pp. 1844-1856
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_12_a3,
     author = {A. V. Razgulin},
     title = {Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1844--1856},
     year = {2001},
     volume = {41},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/}
}
TY  - JOUR
AU  - A. V. Razgulin
TI  - Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 1844
EP  - 1856
VL  - 41
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/
LA  - ru
ID  - ZVMMF_2001_41_12_a3
ER  - 
%0 Journal Article
%A A. V. Razgulin
%T Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 1844-1856
%V 41
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/
%G ru
%F ZVMMF_2001_41_12_a3
A. V. Razgulin. Approximation of the problem of controlling argument transformation in a nonlinear parabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 12, pp. 1844-1856. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a3/

[1] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu. et al., “Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Optimizat Soc. America, 9:1 (1992), 78–90 | DOI

[2] Vorontsov M. A., Iroshnikov N. G., Abernathy R. L., “Diffractive patterns in a nonlinear optical system with field rotation”, Chaos, Solitons and Fractals, 4 (1994), 1701–1716 | DOI | Zbl

[3] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:1 (1993), 69–80 | MR | Zbl

[4] Skubachevskii A. L., “O nekotorykh svoistvakh ellipticheskikh i parabolicheskikh funktsionalno-differentsialnykh uravnenii”, Uspekhi matem. nauk, 51:1(307) (1996), 169–170 | MR

[5] Razgulin A. V., “Ob odnom klasse funktsionalno-differentsialnykh parabolicheskikh uravnenii nelineinoi optiki”, Differents. ur-niya, 36:3 (2000), 400–407 | MR | Zbl

[6] Potapov M. M., “Uravnenie nelineinoi optiki s preobrazovaniyami prostranstvennoi nezavisimoi peremennoi v roli upravlyayuschikh vozdeistvii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1997, no. 3, 13–16 | MR | Zbl

[7] Razgulin A. V., “Localized and periodic patterns in nonlinear optical system with controlled transforms of spatial arguments”, ICONO' 98: Nonlinear Optical Phenomena in Inform. Technol., Proc. SPIE, 3733, 211–217

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[9] Tolstov G. P., Mera i integral, Nauka, M., 1976 | MR | Zbl

[10] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[11] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(\mathcal{Q}_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1980, no. 1, 27–35 | MR | Zbl

[12] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[13] Potapov M. M., “Ob approksimatsii zadach optimizatsii s gladkimi dopustimymi upravleniyami pri nalichii ogranichenii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1983, no. 4, 4–8