@article{ZVMMF_2001_41_12_a1,
author = {S. L. Skorokhodov},
title = {A regularization technique for computing the hypergeometric function $F(a,b;c;z)$in the neighborhood of the singular points $z=1$ and $z=\infty$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1808--1832},
year = {2001},
volume = {41},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a1/}
}
TY - JOUR AU - S. L. Skorokhodov TI - A regularization technique for computing the hypergeometric function $F(a,b;c;z)$in the neighborhood of the singular points $z=1$ and $z=\infty$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 1808 EP - 1832 VL - 41 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a1/ LA - ru ID - ZVMMF_2001_41_12_a1 ER -
%0 Journal Article %A S. L. Skorokhodov %T A regularization technique for computing the hypergeometric function $F(a,b;c;z)$in the neighborhood of the singular points $z=1$ and $z=\infty$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 1808-1832 %V 41 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a1/ %G ru %F ZVMMF_2001_41_12_a1
S. L. Skorokhodov. A regularization technique for computing the hypergeometric function $F(a,b;c;z)$in the neighborhood of the singular points $z=1$ and $z=\infty$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 12, pp. 1808-1832. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_12_a1/
[1] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteorizdat, M.–L., 1950
[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973
[3] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, v. II, Fizmatgiz, M., 1963
[4] Krattser A., Frants V., Transtsendentnye funktsii, Izd-vo inostr. lit., M., 1963
[5] Henrici P., Applied and computational complex analysis, v. I, J. Willey Sons, New York, 1988 ; v. II, 1991 | MR | Zbl | Zbl
[6] Temme N. M., Special functions. An introduction to the classical functions of mathematical physics, J. Willey Sons, New York, 1996 | MR | Zbl
[7] Olver F. W. J., Asymptotics and special functions, Acad. Press, New York, 1974 | MR
[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR
[9] Forrey R. C., “Computing the hypergeometric function”, J. Comput. Phys., 137:1 (1997), 79–100 | DOI | MR | Zbl
[10] Bourguet L., “Sur les integrales Euleriennes et quelques autres fonctions uniformes”, Acta Math., 2 (1883), 261–295 | DOI | MR
[11] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR
[12] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980
[13] Wrench J. W., “Concerning two series for the Gamma function”, Math. Comput., 22:103 (1968), 617–626 ; Errata, Math. Comput., 27:123 (1973), 681–682 | DOI | MR | Zbl | MR
[14] Nielsen N., Die Gammafunktion, v. I, Handbuch der Theorie der Gammafunktion, Chelsea, New York, 1965
[15] Spira R., “Calculation of the Gamma function by Stirling's formula”, Math. Comput., 25:114 (1971), 317–322 | MR | Zbl
[16] Frenzen C. L., “Error bounds for the asymptotic expansion of the ratio of two Gamma functions with complex argument”, SIAM J. Math. Analys., 23:2 (1992), 505–511 | DOI | MR | Zbl
[17] Gautschi W., “Computational aspects of three-term recurrence relations”, SIAM Rev., 9:1 (1967), 24–82 | DOI | MR | Zbl
[18] Olver F. W. J., Sookne D. J., “Note on backward recurrence algorithms”, Math. Comput., 26:120 (1974), 941–947 | MR
[19] Zahar R. V. M., “A mathematical analysis of Miller's algorithm”, Numer. Math., 27 (1977), 427–447 | DOI | MR | Zbl
[20] Kerimov M. K., Skorokhodov S. L., “O vychislenii modifitsirovannykh funktsii Besselya v kompleksnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 650–664 | MR | Zbl