Approximation of completely bounded sets by the deep holes method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 11, pp. 1751-1760 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_11_a9,
     author = {G. K. Kamenev},
     title = {Approximation of completely bounded sets by the deep holes method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1751--1760},
     year = {2001},
     volume = {41},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a9/}
}
TY  - JOUR
AU  - G. K. Kamenev
TI  - Approximation of completely bounded sets by the deep holes method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 1751
EP  - 1760
VL  - 41
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a9/
LA  - ru
ID  - ZVMMF_2001_41_11_a9
ER  - 
%0 Journal Article
%A G. K. Kamenev
%T Approximation of completely bounded sets by the deep holes method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 1751-1760
%V 41
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a9/
%G ru
%F ZVMMF_2001_41_11_a9
G. K. Kamenev. Approximation of completely bounded sets by the deep holes method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 11, pp. 1751-1760. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a9/

[1] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR | Zbl

[2] Vitushkin A. G., Otsenka slozhnosti zadachi tabulirovaniya, Fizmatgiz, M., 1959

[3] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, Mir, M., 1990

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[5] Bushenkov V. A., Chernykh O. L., Kamenev G. K., Lotov A. V., “Multidimensional images given by mappings: construction and visualization”, Pattern Recognition and Image Analys., 5:1 (1995), 35–56

[6] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118 | MR | Zbl

[7] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR

[8] Zhiglyavskii A. A., Zhilinskas A. G., Metody poiska globalnogo ekstremuma, Nauka, M., 1991 | MR

[9] Schneider R., “Zur optimalen Approximation konvexer Hyperflächen durch Polyeder”, Math. Ann., 256:3 (1983), 289–301 | DOI | MR

[10] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[11] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl

[12] Efremov R. V., “Tochnaya otsenka effektivnosti adaptivnogo algoritma approksimatsii vypuklykh tel v dvumernom sluchae”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 2000, no. 2, 29–32 | MR | Zbl