Parallel versions of some iterative methods with factorized preconditioners
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 11, pp. 1619-1636 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_11_a0,
     author = {O. Yu. Milyukova},
     title = {Parallel versions of some iterative methods with factorized preconditioners},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1619--1636},
     year = {2001},
     volume = {41},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a0/}
}
TY  - JOUR
AU  - O. Yu. Milyukova
TI  - Parallel versions of some iterative methods with factorized preconditioners
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 1619
EP  - 1636
VL  - 41
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a0/
LA  - ru
ID  - ZVMMF_2001_41_11_a0
ER  - 
%0 Journal Article
%A O. Yu. Milyukova
%T Parallel versions of some iterative methods with factorized preconditioners
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 1619-1636
%V 41
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a0/
%G ru
%F ZVMMF_2001_41_11_a0
O. Yu. Milyukova. Parallel versions of some iterative methods with factorized preconditioners. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 11, pp. 1619-1636. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a0/

[1] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 580–585 | MR | Zbl

[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[3] Meijerink J. A., Van der Vorst H. A., “An iterative solution method for linear systems, of which the coefficient matrix is a symmetric $M$-matrix”, Math. Comput., 31:137 (1977), 148–162 | MR | Zbl

[4] Gustafsson I., “A class of first order factorization methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl

[5] Dupont T., Kendall R., Rachford H. H., “An approximate factorization procedure for solving self-adjoint elliptic difference equations”, SIAM J. Numer. Analys., 5:3 (1968), 559–573 | DOI | MR | Zbl

[6] Axelsson O., “A Generalized SSOR method”, BIT, 13 (1972), 443–467 | DOI | MR

[7] Kucherov A. B., Makarov M. M., “Metod priblizhennoi faktorizatsii dlya resheniya raznostnykh smeshannykh kraevykh zadach”, Raznostnye metody matem. fiz., Izd-vo MGU, M., 1984, 54–65

[8] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[9] Kucherov A. B., Nikolaev E. S., “Parallelnye algoritmy iteratsionnykh metodov s faktorizovannym operatorom dlya resheniya ellipticheskikh kraevykh zadach”, Differents. ur-niya, 20:7 (1984), 1230–1236 | MR

[10] Nodera T., Tsuno N., “The parallelization of incomplete LU factorization on AP1000”, Euro-Par'98 Parallel Processing, Springer, Berlin, 1998, 788–792 | Zbl

[11] Milyukova O. Yu., Chetverushkin B. N., “Parallelnyi variant poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 228–238 | MR | Zbl

[12] Duff I. S., Meurant G. A., “The effect of ordering on preconditioned conjugate gradients”, BIT, 29 (1989), 635–657 | DOI | MR | Zbl

[13] Eijkhout V., “Analysis of parallel incomplete point factorizations”, Linear Algebra and Appl., 154–156 (1991), 723–740 | DOI | MR | Zbl

[14] Stotland S. A., Ortega J. M., “Ordering for parallel conjugate gradient preconditioners”, SIAM J. Sci. Comput., 18:3 (1997), 854–868 | DOI | MR | Zbl

[15] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya resheniya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl

[16] Notay Y., “An efficient parallel discrete PDE solver”, Parallel Computing, 21 (1995), 1725–1748 | DOI | MR

[17] Notay Y., “DRIC: a dynamic version of the RIC method”, J. Numer. Linear. Algebra and Appl., 1 (1994), 511–533 | DOI | MR