@article{ZVMMF_2001_41_11_a0,
author = {O. Yu. Milyukova},
title = {Parallel versions of some iterative methods with factorized preconditioners},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1619--1636},
year = {2001},
volume = {41},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a0/}
}
TY - JOUR AU - O. Yu. Milyukova TI - Parallel versions of some iterative methods with factorized preconditioners JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 1619 EP - 1636 VL - 41 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a0/ LA - ru ID - ZVMMF_2001_41_11_a0 ER -
O. Yu. Milyukova. Parallel versions of some iterative methods with factorized preconditioners. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 11, pp. 1619-1636. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_11_a0/
[1] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 580–585 | MR | Zbl
[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[3] Meijerink J. A., Van der Vorst H. A., “An iterative solution method for linear systems, of which the coefficient matrix is a symmetric $M$-matrix”, Math. Comput., 31:137 (1977), 148–162 | MR | Zbl
[4] Gustafsson I., “A class of first order factorization methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl
[5] Dupont T., Kendall R., Rachford H. H., “An approximate factorization procedure for solving self-adjoint elliptic difference equations”, SIAM J. Numer. Analys., 5:3 (1968), 559–573 | DOI | MR | Zbl
[6] Axelsson O., “A Generalized SSOR method”, BIT, 13 (1972), 443–467 | DOI | MR
[7] Kucherov A. B., Makarov M. M., “Metod priblizhennoi faktorizatsii dlya resheniya raznostnykh smeshannykh kraevykh zadach”, Raznostnye metody matem. fiz., Izd-vo MGU, M., 1984, 54–65
[8] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR
[9] Kucherov A. B., Nikolaev E. S., “Parallelnye algoritmy iteratsionnykh metodov s faktorizovannym operatorom dlya resheniya ellipticheskikh kraevykh zadach”, Differents. ur-niya, 20:7 (1984), 1230–1236 | MR
[10] Nodera T., Tsuno N., “The parallelization of incomplete LU factorization on AP1000”, Euro-Par'98 Parallel Processing, Springer, Berlin, 1998, 788–792 | Zbl
[11] Milyukova O. Yu., Chetverushkin B. N., “Parallelnyi variant poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 228–238 | MR | Zbl
[12] Duff I. S., Meurant G. A., “The effect of ordering on preconditioned conjugate gradients”, BIT, 29 (1989), 635–657 | DOI | MR | Zbl
[13] Eijkhout V., “Analysis of parallel incomplete point factorizations”, Linear Algebra and Appl., 154–156 (1991), 723–740 | DOI | MR | Zbl
[14] Stotland S. A., Ortega J. M., “Ordering for parallel conjugate gradient preconditioners”, SIAM J. Sci. Comput., 18:3 (1997), 854–868 | DOI | MR | Zbl
[15] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya resheniya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl
[16] Notay Y., “An efficient parallel discrete PDE solver”, Parallel Computing, 21 (1995), 1725–1748 | DOI | MR
[17] Notay Y., “DRIC: a dynamic version of the RIC method”, J. Numer. Linear. Algebra and Appl., 1 (1994), 511–533 | DOI | MR