@article{ZVMMF_2001_41_10_a10,
author = {I. A. Graur},
title = {Method of quasi-gasdynamic splitting for solving the {Euler} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1583--1596},
year = {2001},
volume = {41},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_10_a10/}
}
TY - JOUR AU - I. A. Graur TI - Method of quasi-gasdynamic splitting for solving the Euler equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 1583 EP - 1596 VL - 41 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_10_a10/ LA - ru ID - ZVMMF_2001_41_10_a10 ER -
I. A. Graur. Method of quasi-gasdynamic splitting for solving the Euler equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 10, pp. 1583-1596. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_10_a10/
[1] Volchinskaya M. I., Pavlov A. N., Chetverushkin B. N., Ob odnoi skheme integrirovaniya uravnenii gazovoi dinamiki, Preprint No 113, IPMatem. AN SSSR, M., 1983, 12 pp. | MR
[2] Elizarova T. G., Chetverushkin B. N., “Ispolzovanie kineticheskikh modelei dlya rascheta gazodinamicheskikh techenii”, Matem. modelirovanie. Protsessy v nelineinykh sredakh, Nauka, M., 1986, 261–278 | MR
[3] Sheretov Yu. V., “Kvazigidrodinamicheskie uravneniya kak model techenii szhimaemoi vyazkoi teploprovodnoi sredy”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Tverskoi gos. un-t, Tver, 1997, 127–155
[4] Elizarova T. G., Sheretov Yu. V., “Teoreticheskoe i chislennoe issledovanie kvazigazodinamicheskikh i kvazigidrodinamicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 239–255 | MR | Zbl
[5] Steger J. L., Warming R. F., “Flux vector spliting of the inviscid gasdynamic equations with application to finite-difference methods”, J. Comput. Phys., 40 (1981), 263–293 | DOI | MR | Zbl
[6] van Leer B., “Flux-vector spliting for the Euler equations”, Lect. Notes Phys., 170, 1982, 507–512
[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[8] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, v. 2, Mir, M., 1990 | Zbl
[9] Abalakin I. V., Zhokhova A. V., Chetverushkin B. N., “Raznostnye skhemy na osnove kineticheskogo rasschepleniya vektora potoka”, Matem. modelirovanie, 12:4 (2000), 73–82 | MR | Zbl
[10] Deshpande S. M., Kinetic theory based new method for inviscid compressible flows, AIAA Paper 86-0275
[11] Elizarova T. G., Graur I. A., Lengrand J. C., Chpoun A., “Rarefied gas flow simulation based on quasi gas-dynamic equations”, AIAA Journal, 33:12 (1995), 2316–2324 | DOI | Zbl
[12] Graur I. A., “Algoritmy chislennogo resheniya kvazigazodinamicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 39:8 (1999), 1356–1371 | MR | Zbl
[13] Bochorishvili R. D., Elizarova T. G., Skhirtladze N. M., Metod rasschepleniya dlya kineticheski-soglasovannykh raznostnykh skhem, Preprint No 108, IPMatem. AN SSSR, M., 1988, 24 pp.
[14] Sod G., “A survay of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR | Zbl
[15] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shock”, J. Comput. Phys., 1984, no. 54, 115–173 | DOI | MR | Zbl