On a generalization of the Obreshkoff–Ehrlich method for simultaneous extraction of all roots of polynomials over an arbitrary Chebyshev system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 10, pp. 1459-1466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_10_a0,
     author = {A. I. Iliev and Kh. I. Semerdzhiev},
     title = {On a generalization of the {Obreshkoff{\textendash}Ehrlich} method for simultaneous extraction of all roots of polynomials over an arbitrary {Chebyshev} system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1459--1466},
     year = {2001},
     volume = {41},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_10_a0/}
}
TY  - JOUR
AU  - A. I. Iliev
AU  - Kh. I. Semerdzhiev
TI  - On a generalization of the Obreshkoff–Ehrlich method for simultaneous extraction of all roots of polynomials over an arbitrary Chebyshev system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 1459
EP  - 1466
VL  - 41
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_10_a0/
LA  - en
ID  - ZVMMF_2001_41_10_a0
ER  - 
%0 Journal Article
%A A. I. Iliev
%A Kh. I. Semerdzhiev
%T On a generalization of the Obreshkoff–Ehrlich method for simultaneous extraction of all roots of polynomials over an arbitrary Chebyshev system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 1459-1466
%V 41
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_10_a0/
%G en
%F ZVMMF_2001_41_10_a0
A. I. Iliev; Kh. I. Semerdzhiev. On a generalization of the Obreshkoff–Ehrlich method for simultaneous extraction of all roots of polynomials over an arbitrary Chebyshev system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 10, pp. 1459-1466. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_10_a0/

[1] Makrelov I., Semerdzhiev Kh., Tamburov S., “A method for simultaneous finding all zeros of a given generalized polynomial over a Chebyshev system”, SERDICA Bulg. Math. J., 12 (1986), 351–357 | MR | Zbl

[2] Semerdzhiev Kh., “Iteration methods for simultaneous finding all roots of generalized polynomial equations”, Math. Balk., New Ser., 8 (1994), 311–335 | MR | Zbl

[3] Ehrlich L., “A modified Newton's method for polynomials”, Communs. ACM, 10 (1967), 107–108 | DOI | Zbl

[4] Obreshkoff N., “On the numerical solving equations”, Ann. Sofia Univ., 56 (1963), 73–83

[5] Channabasappa M., “A note on the computation of multiple zeros of polynomials by Newton's method”, BITJ, 19 (1979), 134–135 | DOI | MR | Zbl

[6] Semerdzhiev Kh., Tamburov S., A method of determining all the zeros of a generalized polynomial over an arbitrary Chebyshev system, Communs. JINR, P11-85-931, Dubna, 1985 | MR

[7] Iliev A., “A generalization of Obreshkoff-Ehrlich method for multiple roots of polynomial equations”, C. R. Acad. Bulg. Sci., 49 (1996), 23–26 | MR | Zbl

[8] Iliev A., Semerdzhiev Kh., “Some generalizations of the Chebyshev method for simultaneous determination of all roots of polynomial equations”, Comput. Math. and Math. Phys., 39 (1999), 1384–1391 | MR | Zbl

[9] Semerdzhiev Kh., Methods for simultaneous approximative determining all roots of a given algebraic equation, Communs JINR, P5-12485, Dubna, 1979 | Zbl

[10] Petkovic M., Iterative methods for simultaneous inclusion of polynomial zeros, Lect. Notes in Math., 1387, Springer, Berlin–Heidelberg, 1989 | MR | Zbl

[11] Sendov Bl., Andreev A., Kjurkchiev N., Numerical solution of polynomial equations, Handbook Numer. Analys., 3, Elsevier Sci. Publ., Amsterdam, 1994 | MR