Numerical simulation of shock waves with nonunique structure
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 9, pp. 1408-1415
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_9_a10,
     author = {S. A. Markovskii and S. L. Skorokhodov},
     title = {Numerical simulation of shock waves with nonunique structure},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1408--1415},
     year = {2000},
     volume = {40},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a10/}
}
TY  - JOUR
AU  - S. A. Markovskii
AU  - S. L. Skorokhodov
TI  - Numerical simulation of shock waves with nonunique structure
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 1408
EP  - 1415
VL  - 40
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a10/
LA  - ru
ID  - ZVMMF_2000_40_9_a10
ER  - 
%0 Journal Article
%A S. A. Markovskii
%A S. L. Skorokhodov
%T Numerical simulation of shock waves with nonunique structure
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 1408-1415
%V 40
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a10/
%G ru
%F ZVMMF_2000_40_9_a10
S. A. Markovskii; S. L. Skorokhodov. Numerical simulation of shock waves with nonunique structure. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 9, pp. 1408-1415. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a10/

[1] Wu C. C., “On MHD intermediate shocks”, Geophys. Res. Letts., 14:6 (1987), 668–671 | DOI | Zbl

[2] Markovskii S. A., “Kolebatelnyi raspad magnitogidrodinamicheskikh udarnykh voln maloi amplitudy”, Vestn. MGU. Ser. fiz., astron., 38:5 (1997), 57–58 | MR

[3] Markovskii S. A., “Oscillatory disintegration of nonevolutionary magnetohydrodynamic discontinuities”, Zh. eksperim. i teor. fiz., 113:2 (1998), 615–628

[4] Lyubarskii G. Ya., Polovin R. V., “Rasscheplenie malogo razryva v magnitnoi gidrodinamike”, Zh. eksperim. i teor. fiz., 35:5 (1958), 1291–1292

[5] Gogosov V. V., “O raspade proizvolnogo razryva v magnitnoi gidrodinamike”, Prikl. matem. i mekhan., 25:1 (1961), 108–124 | MR

[6] Lyubarskii G. Ya., Polovin R. V., “O rasscheplenii neustoichivykh udarnykh voln maloi amplitudy v magnitnoi gidrodinamike”, Zh. eksperim. i teor. fiz., 36:4 (1959), 1272–1278 | MR

[7] Polovin R. V., Cherkasova K. P., “O rasscheplenii neevolyutsionnykh udarnykh voln”, Zh. eksperim. i teor. fiz., 41:1 (1961), 263–266

[8] Cherkasova K. P., “K voprosu o rasscheplenii neevolyutsionnykh udarnykh voln”, Zh. prikl. mekhan. i tekhn. fiz., no. 6, 169–171

[9] Landau L. D., “K teorii medlennogo goreniya”, Zh. eksperim. i teor. fiz., 14:6 (1944), 240–245

[10] Kurant R., Fridrikhc K., Sverkhzvukovye techeniya i udarnye volny, Izd-vo inostr. lit., M., 1950

[11] Lax P., “Hyperbolic systems of conservation laws”, Communs Pure and Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl

[12] Akhiezer A. I., Lyubarskii G. Ya., Polovin R. V., “Ob ustoichivosti udarnykh voln v magnitnoi gidrodinamike”, Zh. eksperim. i teor. fiz., 35:3 (1958), 731–737

[13] Kontorovich V. M., “O vzaimodeistvii malykh vozmuschenii s razryvami v magnitnoi gidrodinamike i ob ustoichivosti udarnykh voln”, Zh. eksperim. i teor. fiz., 35:5 (1958), 1216–1225 | Zbl

[14] Syrovatskii S. I., “Ob ustoichivosti udarnykh voln v magnitnoi gidrodinamike”, Zh. eksperim. i teor. fiz., 35:6 (1958), 1466–1470

[15] Wu C. C., “The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?”, J. Geophys. Res., 93:2 (1988), 987–990 | DOI

[16] Wu C. C., “Effects of dissipation on rotational discontinuities”, J. Geophys. Res., 93:5 (1988), 3969–3982 | DOI

[17] Wu C. C., “Formation, structure, and stability of MHD intermediate shocks”, J. Geophys. Res., 95:6 (1990), 8149–8175 | DOI

[18] Kennel C. F., Blandford R. D., Wu C. C., “Structure and evolution of small-amplitude intermediate shock waves”, Phys. Fluids B, 2:2 (1990), 253–269 | DOI | MR

[19] Freistuhler H., Liu T.-P., “Nonlinear stability of overcompressive waves in a rotationally invariant systemms of viscous conservation laws”, Communs Math. Phys., 153:1 (1993), 147–158 | DOI | MR

[20] Hada T., “Evolutionary conditions in the dissipative MHD system: Stability of intermediate MHD shock waves”, Geophys. Res. Letts, 21:21 (1994), 2275–2278 | DOI

[21] Myong R. S., Roe P. L., “Shock waves and rarefaction waves in magnetohydronamics. Part 1. A model system”, J. Plasma Phys., 58:3 (1997), 485–519 | DOI

[22] Myong R. S., Roe P. L., “Shock waves and rarefaction waves in magnetohydronamics. Part 2. The MHD system”, J. Plasma Phys., 58:3 (1997), 521–552 | DOI

[23] Barmin A. A., Kulikovskiy A. G., Pogorelov A. G., “Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics”, J. Comput. Phys., 126:1 (1996), 77–90 | DOI | MR | Zbl

[24] Falle S. A. E. G., Komissarov S. S., “On the existence of intermediate shocks”, Comput. Astrophys., 123:1 (1997), 66–71

[25] Markovskii S. A., “Nonevolutionary magnetohydrodynamic discontinuities in a dissipative medium”, Phys. Plasmas., 5:7 (1998), 2596–2604 | DOI | MR

[26] Markovskii S. A., “Nonevolutionarity of trans-Alfvenic shocks in a magnetized plasma”, J. Geophys. Res., 104:3 (1999), 4427–4436 | DOI

[27] Kantrovitz A., Petschek H., “MHD characteristics and shock waves”, Plasma Phys. in Theory and Applic., New York, 1966, 148–206

[28] Wu C. C., Kennel C. F., “Structure and evolution of time-dependent intermediate shocks”, Phys. Rev. Letts., 68:1 (1992), 56–59 | DOI

[29] Wu C. C., Kennel C. F., “The small amplitude MHD Riemann problem”, Phys. Fluids B, 5:8 (1993), 2877–2886 | DOI | MR

[30] Peire P., Teilor T. D., Vychislitelnye metody v zadachakh mekhaniki zhidkosti, Gidrometeoizdat, L., 1986 | MR