The canonical form as a tool for proving the properties of projectors
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 9, pp. 1285-1290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_9_a1,
     author = {Kh. D. Ikramov},
     title = {The canonical form as a tool for proving the properties of projectors},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1285--1290},
     year = {2000},
     volume = {40},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - The canonical form as a tool for proving the properties of projectors
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 1285
EP  - 1290
VL  - 40
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a1/
LA  - ru
ID  - ZVMMF_2000_40_9_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T The canonical form as a tool for proving the properties of projectors
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 1285-1290
%V 40
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a1/
%G ru
%F ZVMMF_2000_40_9_a1
Kh. D. Ikramov. The canonical form as a tool for proving the properties of projectors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 9, pp. 1285-1290. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_9_a1/

[1] Aleksiejczyk M., Smoktunowicz A., Abstr. Talks at the 6-th Conf. of the ILAS (Chemnitz, Germany, 1996)

[2] Chien M.-T., Yeh L., Yeh Y.-T., Lin F.-Z., “On geometric properties of the numerical range”, Linear Algebra and its Appls., 274 (1998), 389–410 | DOI | MR | Zbl

[3] Gross J., “Idempotency of the Hermitian part of a complex matrix”, Linear Algebra and its Appls., 289 (1999), 135–139 | DOI | MR | Zbl

[4] Gross J., “On the product of orthogonal projectors”, Linear Algebra and its Appls., 289 (1999), 141–150 | DOI | MR | Zbl

[5] Djoković D. Ž., “Unitary similarity of projectors”, Aequationes Math., 42 (1991), 220–224 | DOI | MR | Zbl

[6] Markus M., Mink X., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[7] Horn R. A., Johnson C. R., Topics in matrix analysis, Cambridge Univ. Press, Cambridge, 1991 | MR

[8] Ikramov Kh. D., “O kanonicheskoi forme proektorov otnositelno unitarnogo podobiya”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 3–5 | MR | Zbl

[9] Ikramov Kh. D., “Kanonicheskaya forma Shura unitarno kvazidiagonalizuemoi matritsy”, Zh. vychisl. matem. i matem. fiz., 37:12 (1997), 1411–1415 | MR | Zbl

[10] Ikramov X. D., “Ob odnovremennoi privodimosti k blochno-treugolnomu vidu par kosykh proektorov”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 181–182 | MR | Zbl

[11] Hong Y., Horn R. A., “The Jordan canonical form of a product of a Hermitian and a positive semidefinite matrix”, Linear Algebra and its Appls., 147 (1991), 373–386 | DOI | MR | Zbl