@article{ZVMMF_2000_40_8_a0,
author = {Kh. D. Ikramov},
title = {The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1123--1130},
year = {2000},
volume = {40},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/}
}
TY - JOUR AU - Kh. D. Ikramov TI - The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 1123 EP - 1130 VL - 40 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/ LA - ru ID - ZVMMF_2000_40_8_a0 ER -
%0 Journal Article %A Kh. D. Ikramov %T The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2000 %P 1123-1130 %V 40 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/ %G ru %F ZVMMF_2000_40_8_a0
Kh. D. Ikramov. The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 8, pp. 1123-1130. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/
[1] Barker G. P., Eifler L. Q., Kezlan T. P., “A non-commutative spectral theorem”, Linear Algebra Appl., 20 (1978), 95–100 | DOI | MR | Zbl
[2] George A., Ikramov Kh. D., “Making the non-commutative spectral theorem a finite criterion”, Linear Algebra Appl., 2000
[3] Djoković D.Ž., “Unitary similarity of projectors”, Aequationes Mathematicae, 42 (1991), 220–224 | DOI | MR
[4] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1 (1950), 449–463 | DOI | MR | Zbl
[5] Levitzki J., “A theorem on polynomial identities”, Proc. Amer. Math. Soc., 1 (1950), 334–341 | MR | Zbl
[6] Shapiro H., “Simultaneous block triangularization and block diagonalization of sets of matrices”, Linear Algebra Appl., 25 (1979), 129–137 | DOI | MR | Zbl
[7] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[8] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[9] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math., 73 (1961), 324–348 | DOI | MR | Zbl
[10] Gaines F. J., Laffey T. J., Shapiro H. M., “Pairs of matrices with quadratic minimal polynomials”, Linear Algebra Appl., 52–53 (1983), 289–292 | MR | Zbl
[11] Laffey T. J., “Simultaneous triangularization of matrices – low rank cases and the nonderdgatory case”, Linear and Multilinear Algebra, 6 (1978), 269–306 | DOI | MR
[12] Procesi C., Rings with polynomial identities, Marcel Dekker, New York, 1973 | MR | Zbl
[13] Giambruno A., Valenti A., “On minimal $*$-identities of matrices”, Linear and Multilinear Algebra, 39 (1995), 309–323 | DOI | MR | Zbl
[14] Konstant B., “A theorem of Frobenius, a theorem of Amitsur–Levitzki, and cohomology theory”, Indiana J. Math. (and Mech.), 7 (1958), 237–264 | MR
[15] Rowen L. H., “Standard polynomials in matrix algebras”, Trans. Amer. Math. Soc., 190 (1974), 253–284 | DOI | MR | Zbl
[16] Giambruno A., “On $*$-polynomial identities for $n\times n$ matrices”, J. Algebra, 133 (1990), 433–438 | DOI | MR | Zbl
[17] Ikramov Kh. D., “Ob odnom kriterii kvazidiagonalizuemosti veschestvennykh matrits”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 6–20 | MR | Zbl
[18] Razmyslov Yu. P., “O zadache Kaplanskogo”, Izv. AN SSSR. Ser. matem., 7 (1973), 479–496 | Zbl
[19] Pierce R. S., Associative algebras, Springer, Berlin, 1982 | MR | Zbl