The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 8, pp. 1123-1130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_8_a0,
     author = {Kh. D. Ikramov},
     title = {The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1123--1130},
     year = {2000},
     volume = {40},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 1123
EP  - 1130
VL  - 40
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/
LA  - ru
ID  - ZVMMF_2000_40_8_a0
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 1123-1130
%V 40
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/
%G ru
%F ZVMMF_2000_40_8_a0
Kh. D. Ikramov. The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 8, pp. 1123-1130. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_8_a0/

[1] Barker G. P., Eifler L. Q., Kezlan T. P., “A non-commutative spectral theorem”, Linear Algebra Appl., 20 (1978), 95–100 | DOI | MR | Zbl

[2] George A., Ikramov Kh. D., “Making the non-commutative spectral theorem a finite criterion”, Linear Algebra Appl., 2000

[3] Djoković D.Ž., “Unitary similarity of projectors”, Aequationes Mathematicae, 42 (1991), 220–224 | DOI | MR

[4] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1 (1950), 449–463 | DOI | MR | Zbl

[5] Levitzki J., “A theorem on polynomial identities”, Proc. Amer. Math. Soc., 1 (1950), 334–341 | MR | Zbl

[6] Shapiro H., “Simultaneous block triangularization and block diagonalization of sets of matrices”, Linear Algebra Appl., 25 (1979), 129–137 | DOI | MR | Zbl

[7] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[8] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[9] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math., 73 (1961), 324–348 | DOI | MR | Zbl

[10] Gaines F. J., Laffey T. J., Shapiro H. M., “Pairs of matrices with quadratic minimal polynomials”, Linear Algebra Appl., 52–53 (1983), 289–292 | MR | Zbl

[11] Laffey T. J., “Simultaneous triangularization of matrices – low rank cases and the nonderdgatory case”, Linear and Multilinear Algebra, 6 (1978), 269–306 | DOI | MR

[12] Procesi C., Rings with polynomial identities, Marcel Dekker, New York, 1973 | MR | Zbl

[13] Giambruno A., Valenti A., “On minimal $*$-identities of matrices”, Linear and Multilinear Algebra, 39 (1995), 309–323 | DOI | MR | Zbl

[14] Konstant B., “A theorem of Frobenius, a theorem of Amitsur–Levitzki, and cohomology theory”, Indiana J. Math. (and Mech.), 7 (1958), 237–264 | MR

[15] Rowen L. H., “Standard polynomials in matrix algebras”, Trans. Amer. Math. Soc., 190 (1974), 253–284 | DOI | MR | Zbl

[16] Giambruno A., “On $*$-polynomial identities for $n\times n$ matrices”, J. Algebra, 133 (1990), 433–438 | DOI | MR | Zbl

[17] Ikramov Kh. D., “Ob odnom kriterii kvazidiagonalizuemosti veschestvennykh matrits”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 6–20 | MR | Zbl

[18] Razmyslov Yu. P., “O zadache Kaplanskogo”, Izv. AN SSSR. Ser. matem., 7 (1973), 479–496 | Zbl

[19] Pierce R. S., Associative algebras, Springer, Berlin, 1982 | MR | Zbl