On the embedding of minimal spline spaces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 7, pp. 1012-1029
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_2000_40_7_a6,
author = {Yu. K. Dem'yanovich},
title = {On the embedding of minimal spline spaces},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1012--1029},
year = {2000},
volume = {40},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_7_a6/}
}
Yu. K. Dem'yanovich. On the embedding of minimal spline spaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 7, pp. 1012-1029. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_7_a6/
[1] Daubechies I., Ten lectures on wavelets, CMBS-NSR Series in Appl. Math., 61, 1992 | MR | Zbl
[2] Bakhvalov H. C., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 861–883 | Zbl
[3] Skopina M., “Multiresolution analysis of periodic functions”, East J. Approximations, 3:2 (1997), 203–224 | MR | Zbl
[4] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[5] Strang G., “Wavelets and dilation equations: a brief introduction”, SIAM Rev., 31 (1989), 614–627 | DOI | MR | Zbl
[6] Demyanovich Yu. K., “O postroenii proektsionnykh splainov i veivletov”, Vestn. SPbGU. Ser. 1, 1997, no. 1(1), 17–19