@article{ZVMMF_2000_40_7_a12,
author = {O. M. Belotserkovskii and A. M. Oparin},
title = {A numerical study of three-dimensional {Rayleigh{\textendash}Taylor} instability development},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1098--1103},
year = {2000},
volume = {40},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_7_a12/}
}
TY - JOUR AU - O. M. Belotserkovskii AU - A. M. Oparin TI - A numerical study of three-dimensional Rayleigh–Taylor instability development JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 1098 EP - 1103 VL - 40 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_7_a12/ LA - ru ID - ZVMMF_2000_40_7_a12 ER -
%0 Journal Article %A O. M. Belotserkovskii %A A. M. Oparin %T A numerical study of three-dimensional Rayleigh–Taylor instability development %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2000 %P 1098-1103 %V 40 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_7_a12/ %G ru %F ZVMMF_2000_40_7_a12
O. M. Belotserkovskii; A. M. Oparin. A numerical study of three-dimensional Rayleigh–Taylor instability development. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 7, pp. 1098-1103. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_7_a12/
[1] Sharp D. H., “An overview of Rayleigh–Taylor instability”, Physica D, 12 (1984), 3–18 | DOI | MR | Zbl
[2] Read K. I., “Experimental investigation of turbulent mixing by Rayleigh–Taylor instability”, Physica D, 12 (1984), 45–58 | DOI
[3] Linden P., Redondo J., Youngs D., “Molecular mixing in Rayleigh-Taylor instability”, J. Fluid Mech., 265 (1994), 97–124 | DOI
[4] Marinak M. M., Glendinning S. G., Wallace R. J. et all., “Non-linear evolution of a three-dimensional multimode perturbation”, Phys. Rev. Letts, 80 (1998), 4426–4429 | DOI
[5] Harlow F. H., Welch J. E., “Numerical study of large-amplitude free-surface motion”, Phys. Fluids, 9:5 (1966), 842–851 | DOI
[6] Menikoff R., Zemach C., “Rayleigh–Taylor instability and the use of conformal maps for ideal fluid flow”, J. Comput. Phys., 51:1 (1983), 28–64 | DOI | MR | Zbl
[7] Baker G. R., Meiron D. I., Orszag S. A., “Vortex simulations of the Rayleigh–Taylor instability”, Phys. Fluids, 23:8 (1980), 1485–1490 | DOI | Zbl
[8] Gardner G., Glimm J., McBryan O. et al., “The dynamics of bubble growth for Rayleigh–Taylor instability”, Phys. Fluids, 31:3 (1988), 447–465 | DOI | Zbl
[9] Glimm J., Li X. L., Menikoff R. et al., “A numerical study of bubble interactions in Rayleigh–Taylor instability for compressible fluids”, Phys. Fluids A, 2:11 (1990), 2046–2054 | DOI | MR | Zbl
[10] Belotserkovskii O. M., Davydov Yu. M., Demyanov A. Yu., “Vzaimodeistvie mod vozmuschenii pri neustoichivosti Releya–Teilora”, Dokl. AN SSSR, 288 (1986), 1071–1074
[11] Belotserkovskii O. M., Chislennyi eksperiment v turbulentnosti: ot poryadka k khaosu, Nauka, M., 1994 | MR
[12] Davydov Yu. M., Panteleev M. S., “Razvitie trekhmernykh vozmuschenii pri neustoichivosti Releya–Teilora”, Zh. prikl. mekhan. i tekhn. fiz., 1981, no. 1, 117–122
[13] Yabe T., Hoshino H., Tsuchiya T., “Two- and three-dimensional behavior of Rayleigh–Taylor and Kelvin–Helmholtz instabilities”, Phys. Rev. A, 44 (1991), 2756–2758 | DOI
[14] Youngs D. L., “Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability”, Phys. Fluids A, 3:5 (1991), 1312–1320 | DOI
[15] Li X. L., “Study of three-dimensional Rayleigh–Taylor instability”, Phys. Fluids A, 5:8 (1993), 1904–1913 | DOI | Zbl
[16] Li X. L., “A numerical study of three-dimensional bubble merger in the Rayleigh–Taylor instability”, Phys. Fluids, 8:2 (1996), 336–343 | DOI | Zbl
[17] Belotserkovskii O. M., Guschin V. A., Konshin V. N., “Metod rasschepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnostyu”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 594–609 | MR
[18] Magomedov K. M., Kholodov A. S., “O postroenii raznostnykh skhem dlya uravnenii giperbolicheskogo tipa na osnove kharakteristicheskikh sootnoshenii”, Zh. vychisl. matem: i matem. fiz., 9:2 (1969), 373–386 | MR | Zbl
[19] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, 2-e izd., Fizmatgiz, M., 1994 | Zbl
[20] Abarzhi S. I., Inogamov N. A., “Statsionarnye resheniya v neustoichivosti Releya–Teilora dlya prostranstvennykh periodicheskikh techenii”, Zh. eksperim. i teor.fiz., 107 (1995), 132–143
[21] Abarzhi S. I., “Stable steady flows in Rayleigh–Taylor instability”, Phys. Rev. Letts, 81 (1998), 337–340 | DOI