@article{ZVMMF_2000_40_6_a6,
author = {V. V. Smagin},
title = {Mean-square estimates for the error of a projection-difference method for parabolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {908--919},
year = {2000},
volume = {40},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_6_a6/}
}
TY - JOUR AU - V. V. Smagin TI - Mean-square estimates for the error of a projection-difference method for parabolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 908 EP - 919 VL - 40 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_6_a6/ LA - ru ID - ZVMMF_2000_40_6_a6 ER -
%0 Journal Article %A V. V. Smagin %T Mean-square estimates for the error of a projection-difference method for parabolic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2000 %P 908-919 %V 40 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_6_a6/ %G ru %F ZVMMF_2000_40_6_a6
V. V. Smagin. Mean-square estimates for the error of a projection-difference method for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 6, pp. 908-919. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_6_a6/
[1] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR
[2] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR
[3] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR
[4] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl
[5] Smagin V. V., “O razreshimosti abstraktnogo parabolicheskogo uravneniya s operatorom, oblast opredeleniya kotorogo zavisit ot vremeni”, Differents. ur-niya, 32:5 (1996), 711–712 | MR | Zbl
[6] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[7] Zlotnik A. A., Turetaev I. D., “O tochnykh otsenkakh pogreshnosti i optimalnosti dvukhsloinykh ekonomichnykh metodov resheniya uravneniya teploprovodnosti”, Dokl. AN SSSR, 272:6 (1983), 1306–1311 | MR | Zbl
[8] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti nekotorykh dvukhsloinykh metodov resheniya trekhmernogo uravneniya teploprovodnosti”, Matem. sb., 128(170):4(12) (1985), 530–544 | MR
[9] Turetaev I. D., “Tochnye otsenki gradienta pogreshnosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 26:11 (1986), 1748–1751 | MR
[10] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. ur-niya, 11:3 (1975), 1269–1277 | MR | Zbl
[11] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matematika, 1996, no. 3(406), 50–57 | MR | Zbl
[12] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionno-raznostnogo metoda dlya parabolicheskogo uravneniya s operatorom, oblast opredeleniya kotorogo zavisit ot vremeni”, Sibirskii matem. zh., 37:2 (1996), 406–418 | MR | Zbl
[13] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR