Small-amplitude sound waves in a viscous rotating compressible Newtonian fluid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 5, pp. 775-781 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a rotating viscous compressible Newtonian fluid, the linearized Navier–Stokes equation, the continuity equation and the equation for isoentropic processes are simultaneously considered in order to obtain and equation for pressure waves. This equation is solved to get the dispersion law for such waves. In the dispersion law a non dimensional parameter $R$ in used, which is given by the relation between the characteristic damping time of the wave and the period of the fluid rotation. The limit of a viscous compressible static fluid is obtained. The numerical results of the dispersion relation are given for different values of the angle between the direction of the wave propagation and the rotation axis and for the values of $R$. The existence of gaps and of a typical waveguide effect are reported. The dispersion relation of the modes are given for the real and the imaginary parts of the wave vector.
@article{ZVMMF_2000_40_5_a9,
     author = {J. Marin-Antu\~na and A. Hern\'andez-Rodriguez and O. Sotolongo-Costa},
     title = {Small-amplitude sound waves in a viscous rotating compressible {Newtonian} fluid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {775--781},
     year = {2000},
     volume = {40},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a9/}
}
TY  - JOUR
AU  - J. Marin-Antuña
AU  - A. Hernández-Rodriguez
AU  - O. Sotolongo-Costa
TI  - Small-amplitude sound waves in a viscous rotating compressible Newtonian fluid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 775
EP  - 781
VL  - 40
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a9/
LA  - en
ID  - ZVMMF_2000_40_5_a9
ER  - 
%0 Journal Article
%A J. Marin-Antuña
%A A. Hernández-Rodriguez
%A O. Sotolongo-Costa
%T Small-amplitude sound waves in a viscous rotating compressible Newtonian fluid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 775-781
%V 40
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a9/
%G en
%F ZVMMF_2000_40_5_a9
J. Marin-Antuña; A. Hernández-Rodriguez; O. Sotolongo-Costa. Small-amplitude sound waves in a viscous rotating compressible Newtonian fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 5, pp. 775-781. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a9/

[1] Brejovskij L. M., and Goncharov V. V., Introduction to mechanics of continuous media, Nauka, Moskow, 1982 (in Russian)

[2] Witham G. B., Linear and nonlinear waves, John Wiley Sons, New York, 1974 | MR

[3] Masliennikova V. N., “The explicit representation and a priori evaluation of the boundary-value problem solutions for a Soboliev's system”, Zhurnal Sibir. Mat., 9 (1968), 1182 (in Russian)

[4] Sekerzh-Zenkovich S. Y., “Construction of the fundamental solution for the operator of internal waves”, Dok. Akad. Nauk. SSSR, 246 (1979), 286 (in Russian) | MR

[5] Gabov S. A., Malysheva G. Yu., Sveshnikov A. G., and Shatov A. K., “On some equations arising in the dynamics of a rotating, stratified and compressible fluid”, U.S.S.R. Comput. Math. and Math. Phys., 24:4 (1984), 162–170 | DOI | MR

[6] Gabov S. A., and Marin-Antuña J., “The equation of bidimensional waves in a compressible rotating fluid and diffraction problems”, Zh. Vichisl. Mat. Matem. Fiz., 25:6 (1985), 873-882 (in Russian) | MR

[7] Marin-Antuña J. and Sotolongo-Costa O., “About an equation for small oscillations for a viscous compressible fluid”, Rev. Cub. Fis., 11:1 (1991), 11 (in Spanish)

[8] Landau L. D., and Lifshitz E. M., Hydrodynamics, Nauka, Moscow, 1988 (in Russian)

[9] Gabov S. A., and Marin-Antuña J., “About one hon stationary problem of wave diffraction in a compressible rotating fluid”, Vestnik. Moskovsk. Univ. (Fiz.-Astr.), 26 (1985), 16 (in Russian) | MR

[10] Sveshnikov A. G., Simakov S. A., and Marin-Antuña J., “Unsteady oscillations of a viscous compressible fluid with spatially-periodic excitation”, Comput. Math and Math. Phys., 31:2 (1991), 109-113 | MR | Zbl

[11] Marin-Antuña J., Resume of Ph.D. Dissertation: Some problems of propagation and diffraction of waves in compressible rotating fluids, MGU, Moscow, 1985 (in Russian)