@article{ZVMMF_2000_40_5_a7,
author = {L. G. Volkov and J. D. Kandilarov},
title = {Construction and implementation of finite-difference schemes for systems of diffusion equations with localized chemical reactions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {740--753},
year = {2000},
volume = {40},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a7/}
}
TY - JOUR AU - L. G. Volkov AU - J. D. Kandilarov TI - Construction and implementation of finite-difference schemes for systems of diffusion equations with localized chemical reactions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 740 EP - 753 VL - 40 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a7/ LA - ru ID - ZVMMF_2000_40_5_a7 ER -
%0 Journal Article %A L. G. Volkov %A J. D. Kandilarov %T Construction and implementation of finite-difference schemes for systems of diffusion equations with localized chemical reactions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2000 %P 740-753 %V 40 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a7/ %G ru %F ZVMMF_2000_40_5_a7
L. G. Volkov; J. D. Kandilarov. Construction and implementation of finite-difference schemes for systems of diffusion equations with localized chemical reactions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 5, pp. 740-753. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_5_a7/
[1] Slinko M. G., Zelenyak T. I., Akramov T. A. i dr., “Nelineinaya dinamika kataliticheskikh reaktsii i protsessov”, Matem. modelirovanie, 9:12 (1997), 87–109 | MR
[2] Bimpong-Bota K., Nizan A., Ortoleva P., Ross J., “Cooperative phenomena in analysis of catalytic sites”, J. Chem. Phys., 66 (1970), 3650–3678 | DOI
[3] Peirce A. P., Rabitz H., “An analysis of the effect of defect structures on catalitic surfaces by the boundary element technique”, Surface Sci., 202 (1988), 1–31 | DOI
[4] Peirce A. P., Askar A., Rabitz H., “Convergence properties of a class of boundary element approximations to linear diffusion problems with localized nonlinear reactions”, Numer. Meth. for PDEs, 6 (1990), 75–108 | MR | Zbl
[5] Mazhorova O. C., Popov Yu. P., Pokhilko V. I., “Issledovanie algoritmov chislennogo resheniya sistem parabolicheskikh uravnenii s nelineinymi granichnymi usloviyami”, Differents. ur-niya, 23:7 (1987), 1240–1250 | MR | Zbl
[6] Mazhorova O. S., Popov Yu. P., Sakharnuk A. S., “Ustoichivost raznostnykh zadach dlya sistem parabolicheskikh uravnenii s netraditsionnymi granichnymi usloviyami”, Differents. ur-niya, 33:7 (1997) | MR | Zbl
[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[8] Chadam J. M., Peirce A. P., Yin H.-M., “The blowup property of solutions to some diffusion equations with localized nonlinear reactions”, J. Math. Analys. and Appl., 169:2 (1992), 313–327 | DOI | MR
[9] Chadam J. M., Yin H.-M., “A diffusio equations with localized chemical reactions”, Proc. Edinsburgh Math. Soc., 37 (1993), 101–118 | DOI | MR
[10] Karslou P. D., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964
[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[12] Vabischevich P. N., Chislennye metody resheniya zadach so svobodnoi granitsei, MGU, M., 1987
[13] Vabischevich P. N., “Raznostnye skhemy skvoznogo scheta dlya nekotorykh zadach matematicheskoi fiziki”, Differents. ur-niya, 23:7 (1988), 1161–1166
[14] Beyer R. P., LeVeque R. J., “Analysis of a one-dimensional model for the immersed boundary method”, SIAM J. Numer. Analys., 29:2 (1992), 332–364 | DOI | MR | Zbl
[15] Li Z., “Immersed interface methods for moving interface problems”, Numer. Algorithms, 14 (1997), 269–293 | DOI | MR | Zbl
[16] Wiegmann A., Bube K. P., “The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources”, SIAM J. Numer. Analys., 35:1 (1998), 177–201 | DOI | MR
[17] Samarskii A. A., Moiseenko B. D., “Ekonomicheskaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 816–827 | MR
[18] Kandilarov J., “A second-order difference method for solution of diffusion problems with localized chemical reactions”, Proc. of Second Int. Conf. Finite Difference Methods: Theory and Appl. (Minsk, 1999), 63–67 | MR
[19] Braianov I. A., Kandilarov J. D., “On the realization and stability of difference schemes for diffusion problems with localized reactions”, Notes Numer. Fluid Mech., 62 (1997), 201–209 | MR
[20] Samarskii A. A., Nikolaev E. Ts., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[21] Ortega D., Reinboldt B., Iteratsionnye metody resheniya nelineinykh sistem uravnenii s mnogimi neizvestnymi, Mir, M., 1975 | MR
[22] Ilin V. P., Kuznetsov Yu. I., Tridiagonalnye matritsy i ikh prilozheniya, Nauka, M., 1985 | MR
[23] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR