@article{ZVMMF_2000_40_4_a6,
author = {A. N. Gilmanov},
title = {A local characteristic approach in high-order differencing},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {557--561},
year = {2000},
volume = {40},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_4_a6/}
}
A. N. Gilmanov. A local characteristic approach in high-order differencing. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 4, pp. 557-561. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_4_a6/
[1] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[2] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper, 1985, No 0363
[3] Munz C. D., “On the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77:1 (1988), 18–39 | DOI | MR | Zbl
[4] Yee H. C., Klopfer G. H., Montague J. L., “High resolution shock-capturing schemes for inviscid and viscous hypersonic flows”, J. Comput. Phys., 88:1 (1990), 31–61 | DOI | MR | Zbl
[5] Godunov C. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[6] Roe P. L., “Approximate Rieman solvers, parameter vector and difference schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl
[7] Steger J. L., Warming R. F., “Flux vector splitting of the invescid gasdynamic equations with application to finite difference methods”, J. Comput. Phys., 40:2 (1981), 263–293 | DOI | MR | Zbl
[8] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47 (1959), 271–306 | MR | Zbl
[9] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77
[10] Van Leer B., “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in second-order schemes”, J. Comput. Phys., 14:4 (1974), 361–370 | DOI | Zbl
[11] Osher S., Solomon F., “Upwinded schemes for hyperbolic systems of conservation laws”, Math. Comput., 38 (1982), 339–377 | DOI | MR
[12] Harten A., Lax P. D., Van Leer B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25 (1983), 35–61 | DOI | MR | Zbl
[13] Yee H. C., “Construction of explicit and implicit symmetric TVD schemes and their applications”, J. Comput. Phys., 68:1 (1987), 151–179 | DOI | MR | Zbl