A local characteristic approach in high-order differencing
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 4, pp. 557-561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_4_a6,
     author = {A. N. Gilmanov},
     title = {A local characteristic approach in high-order differencing},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {557--561},
     year = {2000},
     volume = {40},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_4_a6/}
}
TY  - JOUR
AU  - A. N. Gilmanov
TI  - A local characteristic approach in high-order differencing
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 557
EP  - 561
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_4_a6/
LA  - ru
ID  - ZVMMF_2000_40_4_a6
ER  - 
%0 Journal Article
%A A. N. Gilmanov
%T A local characteristic approach in high-order differencing
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 557-561
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_4_a6/
%G ru
%F ZVMMF_2000_40_4_a6
A. N. Gilmanov. A local characteristic approach in high-order differencing. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 4, pp. 557-561. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_4_a6/

[1] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[2] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper, 1985, No 0363

[3] Munz C. D., “On the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77:1 (1988), 18–39 | DOI | MR | Zbl

[4] Yee H. C., Klopfer G. H., Montague J. L., “High resolution shock-capturing schemes for inviscid and viscous hypersonic flows”, J. Comput. Phys., 88:1 (1990), 31–61 | DOI | MR | Zbl

[5] Godunov C. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[6] Roe P. L., “Approximate Rieman solvers, parameter vector and difference schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl

[7] Steger J. L., Warming R. F., “Flux vector splitting of the invescid gasdynamic equations with application to finite difference methods”, J. Comput. Phys., 40:2 (1981), 263–293 | DOI | MR | Zbl

[8] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47 (1959), 271–306 | MR | Zbl

[9] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[10] Van Leer B., “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in second-order schemes”, J. Comput. Phys., 14:4 (1974), 361–370 | DOI | Zbl

[11] Osher S., Solomon F., “Upwinded schemes for hyperbolic systems of conservation laws”, Math. Comput., 38 (1982), 339–377 | DOI | MR

[12] Harten A., Lax P. D., Van Leer B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25 (1983), 35–61 | DOI | MR | Zbl

[13] Yee H. C., “Construction of explicit and implicit symmetric TVD schemes and their applications”, J. Comput. Phys., 68:1 (1987), 151–179 | DOI | MR | Zbl