@article{ZVMMF_2000_40_2_a5,
author = {A. V. Shapeev and V. P. Shapeev},
title = {High-order accurate difference schemes for elliptic equations in a domain with a curvilinear boundary},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {223--232},
year = {2000},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a5/}
}
TY - JOUR AU - A. V. Shapeev AU - V. P. Shapeev TI - High-order accurate difference schemes for elliptic equations in a domain with a curvilinear boundary JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 223 EP - 232 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a5/ LA - ru ID - ZVMMF_2000_40_2_a5 ER -
%0 Journal Article %A A. V. Shapeev %A V. P. Shapeev %T High-order accurate difference schemes for elliptic equations in a domain with a curvilinear boundary %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2000 %P 223-232 %V 40 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a5/ %G ru %F ZVMMF_2000_40_2_a5
A. V. Shapeev; V. P. Shapeev. High-order accurate difference schemes for elliptic equations in a domain with a curvilinear boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 2, pp. 223-232. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a5/
[1] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102:1 (1992), 16–42 | DOI | MR
[2] Godunov C. K., Ryabenkii B. C., Raznostnye skhemy, Nauka, M., 1993
[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1998 | Zbl
[4] Mikeladze Sh. E., Izbrannye trudy, v. 1, Metsniereba, Tbilisi, 1979 | MR | Zbl
[5] Valiullin A. N., Ganzha V. G., Murzin F. A. i dr., “Zadacha avtomaticheskogo postroeniya i issledovaniya na EVM raznostnykh skhem v analiticheskom vide”, Dokl. AN SSSR, 275:3 (1984), 528–532 | MR | Zbl
[6] Valiullin A. N., Ganzha V. G., Murzin F. A. i dr., Primenenie simvolnykh preobrazovanii na EVM dlya issledovaniya i postroeniya raznostnykh skhem, Preprint, ITPM SO AN SSSR, Novosibirsk, 1981, 7–81
[7] Shapeev A. V., Shapeev V. P., “Raznostnye skhemy povyshennogo poryadka tochnosti resheniya kraevykh zadach dlya lineinykh ellipticheskikh uravnenii v oblasti s krivolineinoi granitsei”, Materialy XXXVI Mezhdunar. studencheskoi konf. Matematika (Novosibirsk, 1998), 121–122
[8] Shapeev A. V., Shapeev V. P., “Raznostnye skhemy povyshennogo poryadka tochnosti resheniya kraevykh zadach dlya lineinykh ellipticheskikh uravnenii v oblasti s krivolineinoi granitsei”, III Sibirskii kongress po prikl. i industr. matem., Tezisy dokl. Ch. 2, IM SO RAN, Novosibirsk, 1998, 30
[9] Valiullin A. N., Skhemy povyshennoi tochnosti dlya zadach matematicheskoi fiziki, Izd-vo NGU, Novosibirsk, 1973
[10] Ikramov Kh. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR | Zbl