Ellipsoids containing optimal solutions of the linear programming problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 2, pp. 188-198
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_2_a2,
     author = {I. S. Litvinchev},
     title = {Ellipsoids containing optimal solutions of the linear programming problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {188--198},
     year = {2000},
     volume = {40},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a2/}
}
TY  - JOUR
AU  - I. S. Litvinchev
TI  - Ellipsoids containing optimal solutions of the linear programming problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 188
EP  - 198
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a2/
LA  - ru
ID  - ZVMMF_2000_40_2_a2
ER  - 
%0 Journal Article
%A I. S. Litvinchev
%T Ellipsoids containing optimal solutions of the linear programming problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 188-198
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a2/
%G ru
%F ZVMMF_2000_40_2_a2
I. S. Litvinchev. Ellipsoids containing optimal solutions of the linear programming problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 2, pp. 188-198. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a2/

[1] Kojima M., “Determining basic variables of optimal solutions in Karmarkar's new LP algorithm”, Algorithmica, 1 (1986), 499–515 | DOI | MR | Zbl

[2] Todd M. J., “Improved bounds and containing ellipsoids in Karmarkar's linear programming algorithm”, Math. Operat. Res., 13 (1988), 650–659 | DOI | MR | Zbl

[3] Ye Y., “Recovering the optimal basis in Karmarkar's polynomial algorithm for linear programming”, Math. Operat. Res., 15 (1990), 564–572 | DOI | MR | Zbl

[4] Ye Y., “The build-down scheme for path-following algorithm”, Math. Program., 46 (1990), 61–72 | DOI | MR

[5] Ye Y., Todd M. J., “Containing and shrinking ellipsoids in path-following algorithm”, Math. Program., 47 (1990), 1–9 | DOI | MR | Zbl

[6] Choi I. C., Goldfarb D., “On solution-containing ellipsoids in linear programming”, J. Optimizat. Theory and Appl., 80:1 (1994), 161–173 | DOI | MR | Zbl

[7] Golshtein E. G., Tretyakov H. B., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[8] Kojima M., Mizuno S., Yoshise A., “A primal-dual interior point algorithm for linear programming”, Progress Math. Program. Interior Poing and Related Methods, Ch. 2, Springer, New York, 1989, 29–47 | MR

[9] Wright S. J., Primal-dual interior-point methods, SIAM Publs, Philadelphia, 1997 | MR

[10] Cheng Z. Y., Mitchell J. E., “A primal-dual interior-point method for linear programming based on a weighted function”, J. Optimizat. Theory and Appl., 87:2 (1995), 301–321 | DOI | MR | Zbl

[11] Todd M. J., “Potential-reduction methods in mathematical programming”, Math. Program., 76 (1996), 3–45 | MR