@article{ZVMMF_2000_40_2_a2,
author = {I. S. Litvinchev},
title = {Ellipsoids containing optimal solutions of the linear programming problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {188--198},
year = {2000},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a2/}
}
TY - JOUR AU - I. S. Litvinchev TI - Ellipsoids containing optimal solutions of the linear programming problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 188 EP - 198 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a2/ LA - ru ID - ZVMMF_2000_40_2_a2 ER -
I. S. Litvinchev. Ellipsoids containing optimal solutions of the linear programming problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 2, pp. 188-198. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a2/
[1] Kojima M., “Determining basic variables of optimal solutions in Karmarkar's new LP algorithm”, Algorithmica, 1 (1986), 499–515 | DOI | MR | Zbl
[2] Todd M. J., “Improved bounds and containing ellipsoids in Karmarkar's linear programming algorithm”, Math. Operat. Res., 13 (1988), 650–659 | DOI | MR | Zbl
[3] Ye Y., “Recovering the optimal basis in Karmarkar's polynomial algorithm for linear programming”, Math. Operat. Res., 15 (1990), 564–572 | DOI | MR | Zbl
[4] Ye Y., “The build-down scheme for path-following algorithm”, Math. Program., 46 (1990), 61–72 | DOI | MR
[5] Ye Y., Todd M. J., “Containing and shrinking ellipsoids in path-following algorithm”, Math. Program., 47 (1990), 1–9 | DOI | MR | Zbl
[6] Choi I. C., Goldfarb D., “On solution-containing ellipsoids in linear programming”, J. Optimizat. Theory and Appl., 80:1 (1994), 161–173 | DOI | MR | Zbl
[7] Golshtein E. G., Tretyakov H. B., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR
[8] Kojima M., Mizuno S., Yoshise A., “A primal-dual interior point algorithm for linear programming”, Progress Math. Program. Interior Poing and Related Methods, Ch. 2, Springer, New York, 1989, 29–47 | MR
[9] Wright S. J., Primal-dual interior-point methods, SIAM Publs, Philadelphia, 1997 | MR
[10] Cheng Z. Y., Mitchell J. E., “A primal-dual interior-point method for linear programming based on a weighted function”, J. Optimizat. Theory and Appl., 87:2 (1995), 301–321 | DOI | MR | Zbl
[11] Todd M. J., “Potential-reduction methods in mathematical programming”, Math. Program., 76 (1996), 3–45 | MR