A computer-aided procedure for constructing boundary layers in plate theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 2, pp. 274-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_2_a10,
     author = {O. V. Motygin and S. A. Nazarov},
     title = {A computer-aided procedure for constructing boundary layers in plate theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {274--285},
     year = {2000},
     volume = {40},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a10/}
}
TY  - JOUR
AU  - O. V. Motygin
AU  - S. A. Nazarov
TI  - A computer-aided procedure for constructing boundary layers in plate theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 274
EP  - 285
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a10/
LA  - ru
ID  - ZVMMF_2000_40_2_a10
ER  - 
%0 Journal Article
%A O. V. Motygin
%A S. A. Nazarov
%T A computer-aided procedure for constructing boundary layers in plate theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 274-285
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a10/
%G ru
%F ZVMMF_2000_40_2_a10
O. V. Motygin; S. A. Nazarov. A computer-aided procedure for constructing boundary layers in plate theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 2, pp. 274-285. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a10/

[1] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Probl. matem. analiza, 17, Izd-vo SPbGU, SPb, 1997, 101–152

[2] Friedrichs K. O., Dressier R. F., “A boundary-layer theory for elastic plates”, Communs Pure and Appl. Math., 14:1 (1961), 1–33 | DOI | MR | Zbl

[3] Goldenveizer A. L., “Postroenie priblizhennoi teorii izgiba plastinki metodom asimptoticheskogo integrirovaniya uravnenii teorii uprugosti”, Prikl. matem. i mekhan., 26:4 (1962), 668–686 | MR

[4] Nazarov S. A., “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestn. LGU. Ser. 1, 1982, no. 2(7), 65–68 | Zbl

[5] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikl. matem. i mekhan., 51:4 (1989), 642–650 | MR

[6] Mazja W. G., Nasarov S. A., Plamenewski B. A., Asymptotische theorie elliptischer randwertaufgaben in singulär gestörten Gebieten, v. 2, Akad.-Verlag, Berlin, 1991, 319 pp.

[7] Dauge M., Gruais I., “Développement asymptotique d'ordre arbitrare pour une plaque elastique mince encustrée”, C. Acad. Sci. Paris. Sér. 1, 321 (1995), 375–380 | MR | Zbl

[8] Goldenveizer A. L., Kolos A. B., “K postroeniyu dvumernykh uravnenii uprugikh tonkikh plastin”, Prikl. matem. i mekhan., 29:1 (1965), 141–161

[9] Oleinik O. A., Iosifyan G. A., “Ob usloviyakh zatukhaniya i predelnom povedenii na beskonechnosti reshenii sistemy uravnenii teorii uprugosti”, Dokl. AN SSSR, 258:3 (1981), 550–553 | MR

[10] Nazarov S. A., Vvedenie v asimptoticheskie metody teorii uprugosti, Izd-vo LGU, L., 1983

[11] Gregory R. D., Wan F. V. M., “Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory”, J. Elasticity, 14:1 (1984), 27–64 | DOI | MR | Zbl

[12] Rabotnoe Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988

[13] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin-New York, 1994 | MR

[14] Mielke A., “On the justification of plate theories in linear elasticity theory using exponential decay estimates”, J. Elasticity, 38 (1995), 165–208 | DOI | MR | Zbl

[15] Heywood J. G., Rannacher R., Turek S., “Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations”, Intemat. J. Numer. Meth. in Fluids, 22 (1996), 325–352 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] Sofronov I. L., “Non-reflecting inflow and outflow in a wind tunnel for transonic timeaccurate simulation”, J. Math. Analys. Appl., 221 (1998), 92–115 | DOI | MR | Zbl

[17] Specovius-Neugebauer M., “Approximation of the Stokes Dirichlet problem in domains with cylindrical outlets”, SIAM J. Math. Analys., 30:7 (1999), 645–677 | DOI | MR | Zbl

[18] Panasenko G. P., “Method of asymptotic partial decomposition of domain”, Math. Models and Methods in Appl. Sci., 8:1 (1998), 139–156 | DOI | MR | Zbl

[19] Panasenko G. P., Reztsov M. V., “Osrednenie trekhmernoi zadachi teorii uprugosti v neodnorodnoi plastine”, Dokl. AN SSSR, 294:5 (1987), 1061–1065 | MR | Zbl

[20] Reztsov M. V., “Kompozitsionnye plastiny, armirovannye vysokomodulnymi voloknami”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1394–1404 | MR

[21] Leora S. N., Nazarov S. A., Proskura A. V., “Vyvod predelnykh uravnenii dlya ellipticheskikh kraevykh zadach v tonkikh oblastyakh pri pomoschi EVM”, Zh. vychisl. matem. i matem. fiz., 26:7 (1986), 1032–1048 | MR | Zbl

[22] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. matem. analiza, 16, Izd-vo SPbGU, SPb, 1997, 167–192

[23] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | MR | Zbl

[24] Nazarov S. A., “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zap. nauchn. seminarov peterburgskogo otd. Matem. in-ta RAN, 249, 1997, 212–231

[25] Nicaise S., Sändig A. M., “General interface problems. 1, 2”, Math. Meth. Appl. Sci., 17 (1994), 395–450 | DOI | MR