@article{ZVMMF_2000_40_2_a1,
author = {I. P. Ryazantseva},
title = {On a method of iterative regularization for convex minimization problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {181--187},
year = {2000},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a1/}
}
TY - JOUR AU - I. P. Ryazantseva TI - On a method of iterative regularization for convex minimization problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 181 EP - 187 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a1/ LA - ru ID - ZVMMF_2000_40_2_a1 ER -
I. P. Ryazantseva. On a method of iterative regularization for convex minimization problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 2, pp. 181-187. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_2_a1/
[1] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl
[2] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR
[3] Vasilev F. P., Nedich A., Yachimovich M., “Regulyarizovannyi nepreryvnyi metod linearizatsii dlya zadach minimizatsii s netochnymi iskhodnymi dannymi”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 33–43 | MR
[4] Vasilev F. P., Nedich A., Yachimovich M., “Regulyarizovannyi nepreryvnyi metod linearizatsii vtorogo poryadka dlya zadach minimizatsii s netochnymi iskhodnymi dannymi”, Vestn. MGU. Ser. 15, 1996, no. 3, 5–12 | MR
[5] Vasilev F. P., Nedich A., Yachimovich M., “Regulyarizovannyi nepreryvnyi metod linearizatsii tretego poryadka”, Differents. ur-niya, 31.:10 (1995), 1622–1627 | MR
[6] Ryazantseva I. P., Duntseva E. A., “Ob odnom nepreryvnom metode resheniya vypuklykh ekstremalnykh zadach”, Differents. ur-niya, 34:4 (1998), 480–485 | MR | Zbl
[7] Gareev F. A., Goncharov S. A., Zhidkov N. P. i dr., “Chislennoe reshenie zadach na sobstvennye znacheniya dlya integrodifferentsialnykh uravnenii v teorii yadra”, Zh. vychisl. matem. i matem. fiz., 17:2 (1977), 407–419 | MR | Zbl
[8] Rastrigin L. A., Sistemy ekstremalnogo upravleniya, Nauka, M., 1974 | MR
[9] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Vopr. kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchn. sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43 | MR
[10] Vasilev F. P., Nedich A., “Ob odnom variante regulyarizovannogo metoda proektsii gradienta”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 511–519 | MR
[11] Liskovets O. A., Variatsionnye metody resheniya neustoichivykh zadach, Nauka i tekhn., Minsk, 1981 | MR | Zbl
[12] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s aprifnoi informatsiei, Uralskaya izdat. firma “Nauka”, Ekaterinburg, 1993 | MR
[13] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898 | DOI | MR | Zbl
[14] Vasilev F. P., Obradovich O., “Regulyarizovannyi proksimalnyi metod dlya zadach minimizatsii s netochnymi iskhodnymi dannymi”, Zh. vychisl. matem. i matem. fiz., 33:2 (1993), 179–188 | MR