Complexity bounds for a combined relaxation method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 1, pp. 72-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_1_a8,
     author = {I. V. Konnov},
     title = {Complexity bounds for a combined relaxation method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {72--81},
     year = {2000},
     volume = {40},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_1_a8/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Complexity bounds for a combined relaxation method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 72
EP  - 81
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_1_a8/
LA  - ru
ID  - ZVMMF_2000_40_1_a8
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Complexity bounds for a combined relaxation method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 72-81
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_1_a8/
%G ru
%F ZVMMF_2000_40_1_a8
I. V. Konnov. Complexity bounds for a combined relaxation method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 1, pp. 72-81. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_1_a8/

[1] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[2] Marker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems; a survey of theory, algorithms and applications”, Math. Program., 48:2 (1990), 161–220 | MR

[3] Martinet B., “Regularization d'inéquations variationnelles par approximations successives”, Rev. Franc. Inform. Rech. Operat. Ser. R3, 4 (1970), 154–159 | MR

[4] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898 | DOI | MR | Zbl

[5] Nemirovskii A. S., “Effektivnye iterativnye metody resheniya uravnenii s monotonnymi operatorami”, Ekonomika i matem. metody, 17:2 (1981), 344–359 | MR

[6] Lemaréchal C., Nemirovskii A., Nesterov Y., “New variants of bundle methods”, Math. Program., 69:1 (1995), 111–147 | DOI | MR | Zbl

[7] Magnanti T. L., Perakis G., “A unifying geometric framework and complexity analysis for variational inequalities”, Math. Program., 71:3 (1995), 327–352 | DOI | MR

[8] Bakushinskii A. B., Polyak B. T., “O reshenii variatsionnykh neravenstv”, Dokl. AN SSSR, 219:5 (1974), 1038–1041

[9] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[10] Bruck R., “On weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space”, J. Math. Analys. and Appl., 61:1 (1977), 159–164 | DOI | MR | Zbl

[11] Uryasev S. P., Adaptivnye algoritmy stokhasticheskoi optimizatsii i teorii igr, Nauka, M., 1990 | MR

[12] Konnov I. V., “O skorosti skhodimosti kombinirovannykh relaksatsionnykh metodov”, Izv. vuzov. Matematika, 1993, no. 12, 89–92 | MR | Zbl

[13] Konnov I. V., “Odin obschii podkhod k nakhozhdeniyu statsionarnykh tochek i resheniyu smezhnykh zadach”, Zh. vychisl. matem. i matem. fiz., 36:5 (1996), 40–50 | MR | Zbl

[14] Konnov I. V., “A combined relaxation method for variational inequalities with nonlinear constraints”, Math. Program., 80:2 (1998), 239–252 | DOI | MR | Zbl

[15] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR