Sufficient conditions for the eigenvalues of the operator $-d^2/dx^2+q(x)$ under the Ionkin–Samarskii conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 12, pp. 1787-1800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_12_a2,
     author = {B. I. Bandyrskii and V. L. Makarov},
     title = {Sufficient conditions for the eigenvalues of the operator $-d^2/dx^2+q(x)$ under the {Ionkin{\textendash}Samarskii} conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1787--1800},
     year = {2000},
     volume = {40},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_12_a2/}
}
TY  - JOUR
AU  - B. I. Bandyrskii
AU  - V. L. Makarov
TI  - Sufficient conditions for the eigenvalues of the operator $-d^2/dx^2+q(x)$ under the Ionkin–Samarskii conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 1787
EP  - 1800
VL  - 40
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_12_a2/
LA  - ru
ID  - ZVMMF_2000_40_12_a2
ER  - 
%0 Journal Article
%A B. I. Bandyrskii
%A V. L. Makarov
%T Sufficient conditions for the eigenvalues of the operator $-d^2/dx^2+q(x)$ under the Ionkin–Samarskii conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 1787-1800
%V 40
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_12_a2/
%G ru
%F ZVMMF_2000_40_12_a2
B. I. Bandyrskii; V. L. Makarov. Sufficient conditions for the eigenvalues of the operator $-d^2/dx^2+q(x)$ under the Ionkin–Samarskii conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 12, pp. 1787-1800. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_12_a2/

[1] Makarov V. L., “O funktsionalno-raznostnom metode proizvolnogo poryadka tochnosti resheniya zadachi Shturma–Liuvillya s kusochno-gladkimi koeffitsientami”, Dokl. AN SSSR, 320:1 (1991), 34–39 | MR | Zbl

[2] Makarov V. L., Ukhanev O. L., “FD-method for Sturm–Liouville problems, exponential rate of convergence”, Appl. Math. and Informatics, 2, Tbilisi Univ. Press, 1997, 1–19 | MR

[3] Gordon R. G., “New method for constructing wavefunctions for bound states and scattering”, J. Chem. Phys., 51:1 (1969), 14–25 | DOI | MR

[4] Pryce J. D., Numerical solution of Sturm–Liouville problems, Calderon Press, Oxford etc., 1993 | MR

[5] Bandyrskii B. I., Makarov V. L., Ukhanev O. L., “Dostatochnye usloviya skhodimosti neklassicheskikh asimptoticheskikh razlozhenii dlya zadachi Shturma–Liuvillya s periodicheskimi usloviyami”, Differents. ur-niya, 35:3 (1999), 1–12 | MR

[6] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR

[7] Makarov V. L., Khlobystov V. V., Splain-priblizheniya funktsii, Vyssh. shkola, M., 1983 | MR

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1974