@article{ZVMMF_2000_40_12_a11,
author = {G. A. Bocharov and G. I. Marchuk},
title = {Applied problems of mathematical modeling in immunology},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1905--1920},
year = {2000},
volume = {40},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_12_a11/}
}
TY - JOUR AU - G. A. Bocharov AU - G. I. Marchuk TI - Applied problems of mathematical modeling in immunology JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 1905 EP - 1920 VL - 40 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_12_a11/ LA - ru ID - ZVMMF_2000_40_12_a11 ER -
G. A. Bocharov; G. I. Marchuk. Applied problems of mathematical modeling in immunology. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 12, pp. 1905-1920. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_12_a11/
[1] Marchuk G. I., Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991 | MR
[2] Marchuk G. I., Mathematical models of immune response in infectious diseases, Kluwer Press, Dordrecht, 1997 | Zbl
[3] Bocharov G. A., “Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses”, J. Theor. Biol., 192 (1998), 283–308 | DOI
[4] Ehl S., Klenerman P., Zinkernagel R. M., Bocharov G., “The impact of variation in the number of CD8 T-cell precursors on the outcome of virus infection”, Cell. Immunol., 189 (1998), 67–73 | DOI
[5] Danilkovich A. V., Issledovanie kharakteristik immunnoi zaschity s pomoschyu matematicheskoi modeli protivovirusnogo immunnogo otveta, Dipl. rabota (nauchn. ruk. G. A. Bocharov), MFTI, IVM RAN, M., 1994
[6] Deri I., Pertsev N. V., “Ob ustoichivosti polozhenii ravnovesiya funktsionalno-differentsialnykh uravnenii zapazdyvayuschego tipa, obladayuschikh svoistvom smeshannoi monotonnosti”, Dokl. AN SSSR, 297:1 (1987), 23–25 | MR
[7] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR
[8] Bocharov G. A., “Issledovanie asimptoticheskoi ustoichivosti polozheniya ravnovesiya matematicheskoi modeli protivovirusnogo T-kletochnogo immunnogo otveta na osnove teorii vozmuschenii”, Sopryazhennye uravneniya i teoriya vozmuschenii v zadachakh matem. fiz., OVM AN SSSR, M., 1985, 116–126 | MR
[9] Buldaev A. S., Optimalnoe upravlenie immunnym protsessom na osnove matematicheskikh modelei, Dis. $\dots$ kand. fiz.-matem. nauk, VTs SO AN SSSR, Novosibirsk, 1987
[10] Karatueva N. A., Matrosov V. M., “Vector Lyapunov functions method for difference-differential systems and its applications to immunology”, System Modelling and Optimizat., Lect. Notes. Contr. Inf. Sci., 84, 1986, 384–393 | MR | Zbl
[11] Matrosov B. M., Karatueva H. A., “Metod vektornykh funktsii Lyapunova dlya sistem s zapazdyvaniem, ego prilozhenie k immunologii”, Matem. modeli v immunologii i meditsine, Mir, M., 1986, 283–291 | MR
[12] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR
[13] Marchuk G. I., Metody vychislitelnoi matematiki, Izd. 3-e, Nauka, M., 1989 | MR
[14] Bocharov G. A., Matematicheskoe modelirovanie virusnykh i bakterialnykh infektsii, Dis. $\dots$ dokt. fiz.-matem. nauk, IVM RAN, M., 1995
[15] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s zapazdyvayuschim argumentom, Nauka, M., 1971
[16] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy sistem s posledeistviem, Nauka, M., 1981 | MR
[17] Bocharov G. A., Marchuk G. I., Romanyukha A. A., “Numerical solution by LMMs of stiff delay differential systems modelling an immune response”, Numer. Math., 73 (1996), 131–148 | DOI | MR | Zbl
[18] Baker C. T. H., Paul C. A. H., Willé D. R., “Issues in the numerical solution of evolutionary delay differential equations”, Advanced Comput. Math., 3 (1995), 171–196 | MR | Zbl
[19] Zennaro M., “Delay differential equations: theory and numerics”, Theory and Numerics of Ordinary and Partial Differential Equations, OUP, Oxford, 1995, 27–39 | MR
[20] Marchuk G. I., Romanyukha A. A., Bocharov G. A., “Mathematical model of antiviral immune response II. Parameter indentification for acute viral hepatitis B”, J. Theor. Biol., 151 (1991), 41–70 | DOI
[21] Fong T., Di Bisceglie A. M., Biswas R., et al., “High levels of viral replication during acute hepatitis B infection predict progression to chronicity”, J. Med. Virol., 43 (1994), 155–158 | DOI | MR
[22] Baker C. T. H., Bocharov G. A., Paul C. A. H., Rihan F. A., “Modelling and analysis of time-lags in some basic patterns of cell proliferation”, J. Math. Biol., 37 (1998), 341–371 | DOI | Zbl
[23] Bocharov G. A., Hadeler K. P., “Structured population models, conservation laws and delay equations”, J. Different. Equations., 2000 | MR
[24] Buldaev A. S., “Chislennyi metod optimizatsii upravleniya v sistemakh s zapazdyvaniyami pri modelirovanii immunnogo otveta”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1307–1322 | MR | Zbl
[25] Rundell A., DeCarlo R., Balakrishnan V., HogenEsch H., “Systematic method for determining intravenous drug treatment strategies aiding the humoral immune response”, IEEE Trans. Biomed. Engng., 45 (1998), 429–439 | DOI