@article{ZVMMF_2000_40_11_a9,
author = {V. A. Garanzha},
title = {Barrier method for quasi-isometric grid generation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1685--1705},
year = {2000},
volume = {40},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_11_a9/}
}
V. A. Garanzha. Barrier method for quasi-isometric grid generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 11, pp. 1685-1705. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_11_a9/
[2] Belinskii P. P., Godunov S. K., Ivanov Yu. B., Yanenko I. K., “Primenenie odnogo klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s, krivolineinymi granitsami”, Zh. vychisl. matem. i matem. fiz., 15:6 (1975), 1499–1511 | MR
[3] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions?”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl
[4] Dvinsky A. S., “Adaptive grid generation from harmonic maps on Riemanian manifolds”, J. Comput. Phys., 95:3 (1991), 450 | DOI | MR | Zbl
[5] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR
[6] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR
[7] Charak'yan A. A., Ivanenko S. A., “A variational form of the Winslow grid generator”, J. Comput. Phys., 136 (1997), 385–398 | DOI | MR
[8] Antman S. S., “Regular and singular problems for large elastic deformations of tubes, wedges, and cylinders”, Arch. Ration. Mech. Analys., 83 (1982), 1–52 | DOI | MR
[9] Ciarlet P. G., Mathematical elasticity, v. 1, Stud. Math. Appl., 20, Three Dimensional Elasticity, Elsevier, New York, 1988 | MR
[10] de Almeida V. F., “Domain deformation mapping: application to variational mesh generation”, SIAM J. Sci. Comput., 20:4 (1999), 1252–1275 | DOI | MR | Zbl
[11] Garanzha B. A., Kaporin I. E., “Regulyarizatsiya barernogo variatsionnogo metoda postroeniya raschetnykh setok”, Zh. vychisl. matem. i matem. fiz., 39:9 (1999), 1489–1503 | MR | Zbl
[12] Jacquotte O. P., “A mechanical model for a new grid generation method in computational fluid dynamics”, Comput. Meth. Appl. Mech. and Engrg., 66 (1998), 323–338 | DOI | MR
[13] Shepard M., Georges M., “Automatic three-dimensional mesh generation by the finite octree technique”, Internat. J. Numer. Meth. Engrg., 32 (1991), 709–749 | DOI
[14] Liseikin V. D., Grid generation methods, Springer, Berlin, 1999 | MR | Zbl
[15] Knupp P. M., “Matrix norms condition number. A general framework to improve mesh quality via node movement”, Proc. for the 8th Internat. Meshing Roundtable. South Lake, Tahoe, California, October 10–13, 1999, 13–22
[16] Eells J., Sampson J., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl
[17] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[18] Marshall A., Olkin I., Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983 | MR | Zbl
[19] Godunov S. K., Gordienko V. M., Chumakov G. A., “Quasi-isometric parametrization of a curvilinear quadrangle and a metric of constant curvature”, Siberian Advances Math., 5:2 (1995), 1–20 | MR
[20] Evtushenko Yu. G., Zhadan V. G., “Tochnye vspomogatelnye funktsii v zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 43–57 | MR
[21] Kaporin I. E., “O predobuslavlivanii metoda sopryazhennykh gradientov pri reshenii diskretnykh analogov differentsialnykh zadach”, Differents. ur-niya, 26:7 (1990), 1225–1236 | MR | Zbl
[22] Garanzha V. A., Barrier variational generation of quasi-isometric grids, Res. Rept. No 0007, Univ. of Nijmegen, 2000
[23] Riemslagh K., Vierendeels J., “Grid generation for complex shaped moving domains”, Proc. 5th Internat. Conf. Numer. Grid Generation in Comput. Field Simulation (April 1–5, 1996), ERC, Starkville, 1996, 569–578
[24] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[25] Ivanenko S. A., Adaptivno-garmonicheskie setki, VTs RAN, M., 1997 | MR
[26] Garanzha V. A., Kaporin I. E., “Variational generation of grids around arbitrary trajectory wells in reservoir simulation”, Proc. 6 Internat. Conf. Grid Generation in CFS (Greenwich, UK, 1998), 1001–1010
[27] Garanzha V. A., Kaporin I. E., Konshin V. N., “Reliable flow solver based on the high order control volume Padetype differences”, 16th Internat, Conf. Numer. Meth. in Fluid Dynamics (Arcachon, France, 6–10 July, 1998), Lect. Notes Phys., 515, Springer, Berlin, 1998, 278–283
[28] Ewing R. E., Kuznetsov Yu. A., Lazarov R. D., Maliassov S., Substmcturing preconditioning for finite element approximations of second oder elliptic problems. I. Nonconforming linear elements for the Poisson equation in a parallelepiped, ISC Res. Rept., ISC-94-02-MATH, 1994