Analysis of a new method for approximation of convex compact bodies by polyhedra
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 10, pp. 1475-1490
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_10_a4,
     author = {L. V. Burmistrova},
     title = {Analysis of a new method for approximation of convex compact bodies by polyhedra},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1475--1490},
     year = {2000},
     volume = {40},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a4/}
}
TY  - JOUR
AU  - L. V. Burmistrova
TI  - Analysis of a new method for approximation of convex compact bodies by polyhedra
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 1475
EP  - 1490
VL  - 40
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a4/
LA  - ru
ID  - ZVMMF_2000_40_10_a4
ER  - 
%0 Journal Article
%A L. V. Burmistrova
%T Analysis of a new method for approximation of convex compact bodies by polyhedra
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 1475-1490
%V 40
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a4/
%G ru
%F ZVMMF_2000_40_10_a4
L. V. Burmistrova. Analysis of a new method for approximation of convex compact bodies by polyhedra. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 10, pp. 1475-1490. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a4/

[1] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[2] Kondratev D. L., Lotov A. V., “O vneshnikh otsenkakh i postroenii mnozhestv dostizhimosti dlya nelineinykh upravlyaemykh sistem”, Zh. vychisl. matem. i matem. fiz., 30:4 (1990), 483–490 | MR

[3] Kurzhanski A. B., Vályi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1996 | MR

[4] Lotov A. V., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 67–78 | MR | Zbl

[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[6] Byshenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982

[7] Gruber P. M., Kendrov P., “Approximation of convex bodies by polytopes”, Rendiconti Circolo mat. Palermo. Ser. 2, 31:2 (1982), 195–225 | DOI | MR | Zbl

[8] Gruber P. M., “Approximation of convex bodies”, Convexity and Its Appl., Birkhäuser, Basel, 1983 | MR | Zbl

[9] Bronshtein E. M., Ivanov L. D., “O priblizhenii vypuklykh mnozhestv mnogogrannikami”, Sibirskii matem. zh., 26:5 (1975), 1110–1112

[10] Dudley R., “Metric entropy of some classes od sets with differentiable boundaries”, J. Approximat. Theory, 10 (1974), 227–236 | DOI | MR | Zbl

[11] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[12] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl

[13] Kamenev G. K., “Effektivnye algoritmy approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 446–450 | MR | Zbl

[14] Lotov A. V., Bourmistrova L. V., Bushenkov V. A., “Efficient strategies: an application in water quality planning”, Decision Support Systems for Sustainable Development, Kluwer Acad. Publs, Boston etc., 1999, 145–166

[15] Kamenev G. K., Metody approksimatsii vypuklykh tel mnogogrannikami i ikh primenenie dlya postroeniya i analiza obobschennykh mnozhestv dostizhimosti, Dis. $\dots$ kand. fiz.-matem. nauk, MFTI, M., 1986, 219 pp.

[16] Kamenev G. K., “Algoritm sblizhayuschikhsya mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 135–147 | MR

[17] Schneider R., “Zur optimalen Approximation konvexer Hyperflachen durch Polyeder”, Math. Ann., 256:3 (1983), 289–301 | DOI | MR

[18] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[19] Chernykh O. L., “Postroenie vypukloi obolochki tochek v vide sistemy lineinykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1213–1396 | MR

[20] Preparata F., Sheimos M., Vychislitelnaya geometriya: vvedenie, Mir, M., 1989 | MR | Zbl

[21] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek pri”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl

[22] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[23] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl

[24] McClure D. E., Vitale R. A., “Polygonal approximation of plane convex bodies”, J. Math. Analys. and Appl., 51:2 (1975), 326–358 | DOI | MR | Zbl

[25] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl

[26] Burmistrova L. V., Issledovanie odnogo algoritma approksimatsii vypuklykh kompaktnykh tel mnonogrannikami, VTs RAN, M., 1999