@article{ZVMMF_2000_40_10_a3,
author = {G. K. Kamenev},
title = {On the approximation properties of nonsmooth convex disks},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1464--1474},
year = {2000},
volume = {40},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a3/}
}
G. K. Kamenev. On the approximation properties of nonsmooth convex disks. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 10, pp. 1464-1474. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a3/
[1] Popov V. A., “Approximation of convex figures”, C. r. Acad. Bulgare Sci., 21 (1968), 993–995 | MR | Zbl
[2] Dudley R., “Metric entropy of some classes of sets with differentiable boundaries”, J. Approximat. Theory, 10 (1974), 227–236 ; Corr. 26 (1979), 192–193 | DOI | MR | Zbl | DOI | MR | Zbl
[3] Fejes Tóth L., “Approximation by polygons and polyhedra”, Bull. Amer. Math. Soc., 54 (1948), 431–438 | DOI | MR | Zbl
[4] Schneider R., Wiecker J. A., “Approximation of convex bodies by polytopes”, Bull. London Math. Soc., 13 (1981), 149–156 | DOI | MR | Zbl
[5] Kolmogorov A. M., Tikhomirov B. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR | Zbl
[6] Blyashke V., Krug i shar, Nauka, M., 1967 | MR
[7] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[8] Kamenev G. K., “Effektivnye algoritmy approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 446–450 | MR | Zbl
[9] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl
[10] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR