Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 10, pp. 1447-1450
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_2000_40_10_a1,
author = {A. B. Bakushinskii},
title = {Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1447--1450},
year = {2000},
volume = {40},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/}
}
TY - JOUR AU - A. B. Bakushinskii TI - Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2000 SP - 1447 EP - 1450 VL - 40 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/ LA - ru ID - ZVMMF_2000_40_10_a1 ER -
%0 Journal Article %A A. B. Bakushinskii %T Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2000 %P 1447-1450 %V 40 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/ %G ru %F ZVMMF_2000_40_10_a1
A. B. Bakushinskii. Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 10, pp. 1447-1450. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/
[1] Bakushinskii A. B., “Iteratsionnye metody gradientnogo tipa dlya neregulyarnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 1962–1966 | MR | Zbl
[2] Hanke M., Neubauer A., Scherzer O., “A convergence analysis of Landweber iteration for nonlinear ill-posed problems”, Numer. Math., 72 (1995), 21–37 | DOI | MR | Zbl
[3] Polyak B. T., “Gradientnye metody resheniya uravnenii i neravenstv”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 995–1005
[4] Ramm M., Smirnova A. B., “A numerical method for solving nonlinear ill-posed problems. 3”, Numer. Funct. Analys. and Optimizat., 20 (1999), 317–332 | DOI | MR | Zbl