Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 10, pp. 1447-1450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2000_40_10_a1,
     author = {A. B. Bakushinskii},
     title = {Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1447--1450},
     year = {2000},
     volume = {40},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/}
}
TY  - JOUR
AU  - A. B. Bakushinskii
TI  - Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2000
SP  - 1447
EP  - 1450
VL  - 40
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/
LA  - ru
ID  - ZVMMF_2000_40_10_a1
ER  - 
%0 Journal Article
%A A. B. Bakushinskii
%T Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2000
%P 1447-1450
%V 40
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/
%G ru
%F ZVMMF_2000_40_10_a1
A. B. Bakushinskii. Gradient-type iterative methods with projection onto a fixed subspace for solving irregular operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 40 (2000) no. 10, pp. 1447-1450. http://geodesic.mathdoc.fr/item/ZVMMF_2000_40_10_a1/

[1] Bakushinskii A. B., “Iteratsionnye metody gradientnogo tipa dlya neregulyarnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 1962–1966 | MR | Zbl

[2] Hanke M., Neubauer A., Scherzer O., “A convergence analysis of Landweber iteration for nonlinear ill-posed problems”, Numer. Math., 72 (1995), 21–37 | DOI | MR | Zbl

[3] Polyak B. T., “Gradientnye metody resheniya uravnenii i neravenstv”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 995–1005

[4] Ramm M., Smirnova A. B., “A numerical method for solving nonlinear ill-posed problems. 3”, Numer. Funct. Analys. and Optimizat., 20 (1999), 317–332 | DOI | MR | Zbl