@article{ZVMMF_1999_39_9_a9,
author = {Yu. V. Vassilevski and K. N. Lipnikov},
title = {An adaptive algorithm for quasioptimal mesh generation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1532--1551},
year = {1999},
volume = {39},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a9/}
}
TY - JOUR AU - Yu. V. Vassilevski AU - K. N. Lipnikov TI - An adaptive algorithm for quasioptimal mesh generation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 1532 EP - 1551 VL - 39 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a9/ LA - ru ID - ZVMMF_1999_39_9_a9 ER -
Yu. V. Vassilevski; K. N. Lipnikov. An adaptive algorithm for quasioptimal mesh generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1532-1551. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a9/
[1] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty, Nauka, M., 1989 | MR
[2] Ciarlet P. G., Lions J. L., “Finite element methods”, Handbook of Numer. Analys., Elsevier Science Publ. B. V., 1991, North-Holland | MR
[3] Babushka I., Kellogg R. B., Pitkäranta J., “Direct and inverse error estimates for finite elements with mesh refinements”, Numer. Math., 33 (1979), 447–471 | DOI | MR
[4] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979
[5] George P. L., Automatic mesh generation, John Wiley Sons Ltd., Chichester, 1991 | MR
[6] Verfurth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley, Chichester; Teubner, Stuttgart, 1996
[7] Babushka I., Aziz A., “On the angle condition in the finite element method”, SIAM. J. Numer. Analys., 13 (1976), 214–226 | DOI | MR
[8] D'Azevedo E. F., “Optimal triangular mesh generation by coordinate transformation”, SIAM J. Sci. Statist. Comput., 12:4 (1991), 755–786 | DOI | MR
[9] D'Azevedo E. F., Simpson R. B., “On Optimal interpolation triangle incidences”, SIAM J. Sci. Statist. Comput., 10:6 (1989), 1063–1075 | DOI | MR
[10] D'Azevedo E. F., “On optimal triangular meshes for minimizing the gradient error”, Numer. Math., 59 (1991), 321–348 | DOI | MR
[11] Rippa S., “Long and thin triangles tan be good for linear interpolation”, SIAM J. Numer. Analys., 29 (1992), 257–270 | DOI | MR | Zbl
[12] Buscaglia G. C., Dari E. A., “Anisotropic mesh optimization and its application in adaptivity”, Internat. J. Numer. Meth. Eng., 1998 (to appear)
[13] Fortin M., Vallet M.-G., Dompierre J., Bourgault Y., Habashi W. G., “Anisotropic mesh adaptation: theory, validation and application”, Comput. Fluid. Dynamic., John Wiley and Sons Ltd., Chichester etc., 1996, 174–180
[14] Dompierre J., Vallet M.-G., Fortin M. et al., Edge-based mash adaptation for CFD, Rept. CERCA, R95-73, 1995, 33 pp.
[15] Castro Diaz M. J., Hecht F. Mohammadi B., New progress in anisotropic grid adaptation for inviscid and viscous flows simulations, Rapp. Rech. 2671, Inst. Nat. Rech. Informat. Automat. France, 1995, 22 pp.
[16] Borouchaki H., George P.-L., Hecht F. et al., Mailleur bidimensionnel de Delaunay gouverne par une carte de metriques, Rapp. Rech. 2760, Inst. Nat. Rech. Informat. Automat. France, 1995
[17] Peraire J., Morgan K., Peiro J., Unstructured mesh methods for CFD, I.C. Aero Rept. 90-04, Imperial College, UK, 1990
[18] Zavattieri P. D., Dari E. A., Buscaglia G. C., “Optimization strategies in unstructured mesh generation”, Internat. J. Numer. Meth. in Engng., 39 (1996), 2055–2071 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[19] Bank R. E., PLTMG: a software pafckage for solving elliptic partial differential equations, SIAM, Philadelphia, PA, 1990 | MR
[20] Mohammadi B., Fluid dynamics computation with NSC2KE, an user-guide, release 1.0, Rapp. Rech, RT-0164, Inst. Nat. Rech. Informat. Automat. France, 1994