Convergence rate of the Galerkin method for a class of quasilinear operator differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1519-1531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_9_a8,
     author = {N. N. Bukesova and S. E. Zhelezovsky},
     title = {Convergence rate of the {Galerkin} method for a class of quasilinear operator differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1519--1531},
     year = {1999},
     volume = {39},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a8/}
}
TY  - JOUR
AU  - N. N. Bukesova
AU  - S. E. Zhelezovsky
TI  - Convergence rate of the Galerkin method for a class of quasilinear operator differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1519
EP  - 1531
VL  - 39
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a8/
LA  - ru
ID  - ZVMMF_1999_39_9_a8
ER  - 
%0 Journal Article
%A N. N. Bukesova
%A S. E. Zhelezovsky
%T Convergence rate of the Galerkin method for a class of quasilinear operator differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1519-1531
%V 39
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a8/
%G ru
%F ZVMMF_1999_39_9_a8
N. N. Bukesova; S. E. Zhelezovsky. Convergence rate of the Galerkin method for a class of quasilinear operator differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1519-1531. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a8/

[1] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966 | MR

[2] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 754–757 | MR

[3] Mikhlin S. G., “Po povodu metoda Rittsa”, Dokl. AN SSSR, 106:3 (1956), 391–394 | MR

[4] Dzhishkariani A. V., “O bystrote skhodimosti metoda Bubnova–Galerkina”, Zh. vychisl. matem. i matem. fiz., 4:2 (1964), 343–348

[5] Vainikko G. S., “Nekotorye otsenki pogreshnosti metoda Bubnova–Galerkina. I. Asimptoticheskie otsenki”, Uch. zap. Tartuskogo un-ta, 150 (1964), 188–201 | MR

[6] Zarubin A. G., “Issledovanie proektsionnoi protsedury Galerkina–Petrova metodom drobnykh stepenei”, Dokl. AN SSSR, 297:4 (1987), 780–784 | MR | Zbl

[7] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya lineinykh nestatsionarnykh uravnenii”, Differents. ur-niya, 18:4 (1982), 639–645 | MR | Zbl

[8] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. ur-niya, 26:12 (1990), 2051–2059 | MR | Zbl

[9] Zhelezovskaya L. A., Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya giperbolicheskikh uravnenii”, Differents. ur-niya, 26:2 (1990), 323–333 | MR

[10] Zhelezovskii S. E., “Metod Bubnova–Galerkina dlya abstraktnoi kvazilineinoi zadachi o statsionarnom deistvii”, Differents. ur-niya, 31:7 (1995), 1222–1231 | MR

[11] Zhelezovskii S. E., O skorosti skhodimosti metoda Galerkina dlya odnogo klassa kvazilineinykh evolyutsionnykh zadach, Dep. v VINITI 08.01.98, No 24-V98

[12] Lyashko A. D., “O skhodimosti metodov tipa Galerkina”, Dokl. AN SSSR, 120:2 (1958), 242–244 | Zbl

[13] Sobolevskii P. E., “Teorema o smeshannykh proizvodnykh i otsenka skorosti skhodimosti metoda Galerkina dlya parabolicheskikh uravnenii”, Dokl. AN USSR. Ser. A, 1987, no. 8, 12–16 | MR

[14] Dautov R. Z., Lyashko A. D., Solovev S. I., “Skhodimost metoda Bubnova–Galerkina s vozmuscheniyami dlya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Differents. ur-niya, 27:7 (1991), 1144–1153 | MR

[15] Timerbaev M. R., Lyashko A. D., “Ob otsenkakh pogreshnosti skhem metoda konechnykh elementov dlya kvazilineinykh vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. ur-niya, 30:7 (1994), 1239–1243 | MR | Zbl

[16] Kokurin M. Yu., “K obosnovaniyu Metoda Galerkina dlya nekoertsitivnykh ellipticheskikh uravnenii s monotonnoi nelineinostyu”, Differents. ur-niya, 33:3 (1997), 425–427 | MR | Zbl

[17] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR

[18] Lions Zh. -L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[19] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii kolebanii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21:6 (1957), 747–784

[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[21] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhteorizdat, M., 1953

[22] Raevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[23] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[24] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[25] Morozov N. F., “Issledovanie kolebanii prizmaticheskogo sterzhnya pod deistviem poperechnoi nagruzki”, Izv. vuzov. Matem., 1965, no. 3, 121–125 | Zbl