@article{ZVMMF_1999_39_9_a5,
author = {V. A. Garanzha and I. E. Kaporin},
title = {Regularization of the barrier variational method of grid generation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1489--1503},
year = {1999},
volume = {39},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a5/}
}
TY - JOUR AU - V. A. Garanzha AU - I. E. Kaporin TI - Regularization of the barrier variational method of grid generation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 1489 EP - 1503 VL - 39 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a5/ LA - ru ID - ZVMMF_1999_39_9_a5 ER -
V. A. Garanzha; I. E. Kaporin. Regularization of the barrier variational method of grid generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1489-1503. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a5/
[1] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl
[2] Gilbarg D., Trudinger H., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[3] Godunov S. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:6 (1967), 902–914 | MR
[4] Belinskii P. P., Godunov S. K., Ivanov Yu. B., Yanenko I. K., “Primenenie odnogo klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s krivolineinymi granitsami”, Zh. vychisl. matem. i matem. fiz., 15:6 (1975), 1499–1511 | MR
[5] Dvinsky A. S., “Adaptive grid generation from harmonic maps on Riemanian manifolds”, J. Comput. Phys., 95 (1991), 450 | DOI | MR | Zbl
[6] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR
[7] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1498–1506 | MR
[8] Winslow A. M., “Numerical solution of the quasilinear Poisson equation in a non-uniform triangle mesh”, J. Comput. Phys., 1:2 (1967), 149–172 | DOI | MR
[9] Charakch'yan A. A., Ivanenko S. A., “A variational form of the Winslow grid generator”, J. Comput. Phys., 136 (1997), 385–398 | DOI | MR
[10] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[11] Garanzha V. A., Kaporin I. E., Konshin V. N., “Reliable flow solver based on the high order control volume Padé-type differences”, 16th Int. on Numer. Meth. in Fluid Dynamics (6–10 July 1998), Lect. Notes in Phys., 515, Springer, Arcachon, France, 1998, 278–283
[12] Garanzha V. A., Kaporin I. E., “Variational generation of grids around arbitrary trajectory wells in reservoir simulation”, Proc. Int. Conf. on Grid Generation in CFS (Greenwich, UK, 1998), 1001–1010
[13] Kaporin I. E., “Second order incomplete Cholesky preconditionings for the CG method”, Proc. of IMMB'98, Iterative Solution Methods for the Elasticity Equations as Arising in Mech. and Biomech. (Nijmengen: Netherlands, Sept. 28–30, 1998), 47–49
[14] Ajiz M. A., Jennings A., “A robust incomplete Choleski-conjugate gradient algorithm”, Internat. J. Numer. Methods Engrs., 20 (1984), 949–966 | DOI | MR | Zbl
[15] Saad Y., Schultz M., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. and Statist. Comput., 7 (1986), 856–869 | DOI | MR | Zbl
[16] Papadrakakis M., Yakoumidakis M., “On the preconditioned conjugate gradient method for solving $Ax-\lambda Bx=0$”, Internat. J. Numer. Methods in Engrs., 24 (1987), 1355–1366 | DOI | MR | Zbl
[17] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR