Regularization of the barrier variational method of grid generation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1489-1503 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_9_a5,
     author = {V. A. Garanzha and I. E. Kaporin},
     title = {Regularization of the barrier variational method of grid generation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1489--1503},
     year = {1999},
     volume = {39},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a5/}
}
TY  - JOUR
AU  - V. A. Garanzha
AU  - I. E. Kaporin
TI  - Regularization of the barrier variational method of grid generation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1489
EP  - 1503
VL  - 39
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a5/
LA  - ru
ID  - ZVMMF_1999_39_9_a5
ER  - 
%0 Journal Article
%A V. A. Garanzha
%A I. E. Kaporin
%T Regularization of the barrier variational method of grid generation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1489-1503
%V 39
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a5/
%G ru
%F ZVMMF_1999_39_9_a5
V. A. Garanzha; I. E. Kaporin. Regularization of the barrier variational method of grid generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1489-1503. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a5/

[1] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[2] Gilbarg D., Trudinger H., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[3] Godunov S. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:6 (1967), 902–914 | MR

[4] Belinskii P. P., Godunov S. K., Ivanov Yu. B., Yanenko I. K., “Primenenie odnogo klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s krivolineinymi granitsami”, Zh. vychisl. matem. i matem. fiz., 15:6 (1975), 1499–1511 | MR

[5] Dvinsky A. S., “Adaptive grid generation from harmonic maps on Riemanian manifolds”, J. Comput. Phys., 95 (1991), 450 | DOI | MR | Zbl

[6] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR

[7] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1498–1506 | MR

[8] Winslow A. M., “Numerical solution of the quasilinear Poisson equation in a non-uniform triangle mesh”, J. Comput. Phys., 1:2 (1967), 149–172 | DOI | MR

[9] Charakch'yan A. A., Ivanenko S. A., “A variational form of the Winslow grid generator”, J. Comput. Phys., 136 (1997), 385–398 | DOI | MR

[10] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[11] Garanzha V. A., Kaporin I. E., Konshin V. N., “Reliable flow solver based on the high order control volume Padé-type differences”, 16th Int. on Numer. Meth. in Fluid Dynamics (6–10 July 1998), Lect. Notes in Phys., 515, Springer, Arcachon, France, 1998, 278–283

[12] Garanzha V. A., Kaporin I. E., “Variational generation of grids around arbitrary trajectory wells in reservoir simulation”, Proc. Int. Conf. on Grid Generation in CFS (Greenwich, UK, 1998), 1001–1010

[13] Kaporin I. E., “Second order incomplete Cholesky preconditionings for the CG method”, Proc. of IMMB'98, Iterative Solution Methods for the Elasticity Equations as Arising in Mech. and Biomech. (Nijmengen: Netherlands, Sept. 28–30, 1998), 47–49

[14] Ajiz M. A., Jennings A., “A robust incomplete Choleski-conjugate gradient algorithm”, Internat. J. Numer. Methods Engrs., 20 (1984), 949–966 | DOI | MR | Zbl

[15] Saad Y., Schultz M., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. and Statist. Comput., 7 (1986), 856–869 | DOI | MR | Zbl

[16] Papadrakakis M., Yakoumidakis M., “On the preconditioned conjugate gradient method for solving $Ax-\lambda Bx=0$”, Internat. J. Numer. Methods in Engrs., 24 (1987), 1355–1366 | DOI | MR | Zbl

[17] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR