Some generalizations of the Chebyshev method for simultaneous determination of all roots of polynomial equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1445-1452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_9_a1,
     author = {A. I. Iliev and Kh. I. Semerdzhiev},
     title = {Some generalizations of the {Chebyshev} method for simultaneous determination of all roots of polynomial equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1445--1452},
     year = {1999},
     volume = {39},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a1/}
}
TY  - JOUR
AU  - A. I. Iliev
AU  - Kh. I. Semerdzhiev
TI  - Some generalizations of the Chebyshev method for simultaneous determination of all roots of polynomial equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1445
EP  - 1452
VL  - 39
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a1/
LA  - ru
ID  - ZVMMF_1999_39_9_a1
ER  - 
%0 Journal Article
%A A. I. Iliev
%A Kh. I. Semerdzhiev
%T Some generalizations of the Chebyshev method for simultaneous determination of all roots of polynomial equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1445-1452
%V 39
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a1/
%G ru
%F ZVMMF_1999_39_9_a1
A. I. Iliev; Kh. I. Semerdzhiev. Some generalizations of the Chebyshev method for simultaneous determination of all roots of polynomial equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1445-1452. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a1/

[1] Weierstraß K., “Neuer Beweis des Satzes, daß jede Ganze Rationale Funktion einer Veränderlichen dargestellt werden kann als ein Produkt aus Linearen Funktionen derselben Veränderlichen”, Ges. Werke, 3 (1903), 251–269

[2] Dochev K., “Vidoizmenen metod na Nyuton za ednovremenno priblizitelno presmyatane na vsichki koreni na dadeno algebrichno uravnenie”, Fiz.-mat. sp., 5 (1962), 136–139

[3] Ehrlich L. W., “A modified Newton's method for polynomials”, Communs ACM, 10 (1967), 107–108 | DOI | Zbl

[4] Dochev K., Byrnev P., “O nekotorykh modifikatsiyakh metoda Nyutona dlya priblizhennogo resheniya algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 4:5 (1964), 915–920 | Zbl

[5] Semerdzhiev Kh. I., Metody dlya odnovremennogo priblizhennogo opredeleniya vsekh kornei zadannogo algebraicheskogo uravneniya, Soobsch. R5-12485, OIYaI, Dubna, 1979

[6] Makrelov I., “On a modification of Chebyshev's method”, J. Comput. and Appl. Math., 41 (1992), 373–375 | DOI | MR | Zbl

[7] Makrelov I., “On a modification of Chebyshev's method”, Zh. vychisl. matem. i matem. fiz., 33:2 (1993), 299–302 | MR | Zbl

[8] Semerdzhiev Khr., “Iteration methods for simultaneous finding all roots of generalized polynomial equations”, Math. Balkanica. New Series, 8 (1994), 311–335 | MR | Zbl