Matrix completion problems with arbitrary locations of prescribed entries
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1427-1444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_9_a0,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {Matrix completion problems with arbitrary locations of prescribed entries},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1427--1444},
     year = {1999},
     volume = {39},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a0/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - Matrix completion problems with arbitrary locations of prescribed entries
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1427
EP  - 1444
VL  - 39
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a0/
LA  - ru
ID  - ZVMMF_1999_39_9_a0
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A V. N. Chugunov
%T Matrix completion problems with arbitrary locations of prescribed entries
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1427-1444
%V 39
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a0/
%G ru
%F ZVMMF_1999_39_9_a0
Kh. D. Ikramov; V. N. Chugunov. Matrix completion problems with arbitrary locations of prescribed entries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 9, pp. 1427-1444. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_9_a0/

[1] Ikramov Kh. D., Chugunov V. N., “On the Teng inverse eigenvalue problem”, Linear Algebra Appl., 208–209 (1994), 397–399 | DOI | MR | Zbl

[2] Ikramov Kh. D., Uilyamson K., “Ob obratnoi zadache na sobstvennye znacheniya Kheglanda–Marti”, Matem. zametki, 61:1 (1977), 144–148 | MR

[3] Parlett B., Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl

[4] George A., Ikramov Kh. D., Tang W. P., Tchugunov V. N., “On doubly symmetric tridiagonal forms for complex matrices and tridiagonal inverse eigenvalue problems”, SIAM J. Matrix Analysis and Its Appl., 17:3 (1996), 680–690 | DOI | MR | Zbl

[5] Fiedler M., “Expressing a polynomial as the characteristic polynomial of a symmetric matrix”, Linear Algebra and Its Appl., 14 (1990), 255–270 | MR

[6] Schmeiser G., “A real symmetric tridiagonal matrix with a given characteristic polynomial”, Linear Algebra and Its Appl., 193 (1973), 11–18 | DOI | MR

[7] de Oliveira G. N., “Matrices with prescribed submatrices”, Linear and Multilinear Algebra, 12 (1982), 125–138 | DOI | MR | Zbl

[8] Ikramov Kh. D., Chugunov B. H., “O kompyuterno-algebraicheskikh protsedurakh, stroyaschikh matritsy s predpisannymi sobstvennymi znacheniyami i diagonalnymi elementami”, Zh. vychisl. matem. i matem. fiz., 39:6 (1999), 876–881 | MR | Zbl

[9] de Oliveira G. N., “Matrices with prescribed entries and eigenvalues I”, Proc. Amer. Math. Soc., 37 (1973), 380–386 | DOI | MR | Zbl

[10] de Oliveira G. N., “Matrices with prescribed entries and eigenvalues II”, SIAM J. Appl. Math., 24 (1973), 414–417 | DOI | MR | Zbl

[11] de Oliveira G. N., “Matrices with prescribed entries and eigenvalues III”, Archiv. Math., 26 (1975), 57–59 | DOI | MR | Zbl

[12] da Silva J. A. D., “Matrices with prescribed entries and characteristic polynomial”, Proc. Amer. Math. Soc., 45 (1974), 31–37 | MR | Zbl

[13] Char B. W., Geddes K. O., Gannet G. H. et al., Maple V language reference manual, Springer, New York etc., 1991

[14] Faddeev D. K., Faddeeva B. H., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., L., 1963 | MR | Zbl