Numerical algorithms for viscous fluid flows based on high-order accurate conservative compact schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 8, pp. 1378-1392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_8_a12,
     author = {V. A. Garanzha and V. N. Konshin},
     title = {Numerical algorithms for viscous fluid flows based on high-order accurate conservative compact schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1378--1392},
     year = {1999},
     volume = {39},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_8_a12/}
}
TY  - JOUR
AU  - V. A. Garanzha
AU  - V. N. Konshin
TI  - Numerical algorithms for viscous fluid flows based on high-order accurate conservative compact schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1378
EP  - 1392
VL  - 39
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_8_a12/
LA  - ru
ID  - ZVMMF_1999_39_8_a12
ER  - 
%0 Journal Article
%A V. A. Garanzha
%A V. N. Konshin
%T Numerical algorithms for viscous fluid flows based on high-order accurate conservative compact schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1378-1392
%V 39
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_8_a12/
%G ru
%F ZVMMF_1999_39_8_a12
V. A. Garanzha; V. N. Konshin. Numerical algorithms for viscous fluid flows based on high-order accurate conservative compact schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 8, pp. 1378-1392. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_8_a12/

[1] Petukhov I. V., “Chislennyi raschet dvumernykh techenii v pogranichnom sloe”, Chisl. metody resheniya differents. i integr. uravnenii i kvadraturnye f-ly, Izd-vo AN SSSR, M., 1964, 304–325

[2] Collatz L., The numerical treatment of differential equations, Springer, New York, 1966

[3] Krause E., Hirschel E. H., Kordulla W., “Fourth-order “Mehrstellen” integration for three-dimensional turbulent boundary layers”, Comput. and Fluids, 4 (1976), 77–92 | DOI | MR | Zbl

[4] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 103 (1992), 16–42 | DOI | MR | Zbl

[5] Lee S., Lele S. K., Moin P., “Direct numerical simulation of isotopic turbulence interacting with a weak shock wave”, J. Fluid Mech., 251 (1993), 533–562 | DOI

[6] Tolstykh A. I., “O metode chislennogo resheniya uravnenii Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:1 (1973), 48–51

[7] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[8] Tolstykh A. I., High accuracy non-centered compact schemes for fluid dynamics applications, World Scient., Singapore, 1994 | Zbl

[9] Tikhonov A. H., Samarskii A. A., “Odnorodnye raznostnye skhemy vysokogo poryadka tochnosti na neravnomernykh setkakh”, ZhVM i MF, 1:3 (1961), 425–440 | Zbl

[10] Garanzha V. A., “Control volume technique based on the non-centered Pade-type differences”, Finite Volumes for Complex Appl., Hermes, Paris, 1996, 201–208

[11] Garanzha V. A., Konshin V. N., Non-centered Padé-type differences for the systems of the conservation laws. Application to the incompressible fluid flows, Comput. Center RAS, M., 1996

[12] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Nauka, M., 1987

[13] Sadd Y., Schultz M., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. and Statist. Comput., 7 (1986), 856–869 | DOI | MR

[14] Koseff J. R., Street R. L., “Visualization studies of a shear driven three-dimensional recirculating flow”, J. Fluids Engng., 106 (1984), 21–29 | DOI

[15] Dennis S. C. R., Hudson J. D., “Compact $h^4$ finite-difference approximations to operators of Navier–Stokes type”, J. Comput. Phys., 85 (1989), 390–416 | DOI | MR | Zbl

[16] Ghia U., Ghia K. N., Shin S. T., “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method”, J. Comput. Phys., 48 (1982), 387–411 | DOI | Zbl

[17] Vanka S. P., “Block-implicit multigrid solution of Navier–Stokes equations in primitive variables”, J. Comput. Phys., 65:1 (1986), 138–158 | DOI | MR | Zbl

[18] Sen S., Lee C. K., Leng D. E., 1994 Ann. AIChE Meeting, Paper 189a (San Francisko, 1994)