An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 7, pp. 1142-1150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_7_a8,
     author = {E. A. Volkov and A. K. Kornoukhov},
     title = {An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1142--1150},
     year = {1999},
     volume = {39},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/}
}
TY  - JOUR
AU  - E. A. Volkov
AU  - A. K. Kornoukhov
TI  - An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1142
EP  - 1150
VL  - 39
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/
LA  - ru
ID  - ZVMMF_1999_39_7_a8
ER  - 
%0 Journal Article
%A E. A. Volkov
%A A. K. Kornoukhov
%T An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1142-1150
%V 39
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/
%G ru
%F ZVMMF_1999_39_7_a8
E. A. Volkov; A. K. Kornoukhov. An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 7, pp. 1142-1150. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/

[1] Volkov E. A., Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press Inc., Boca Raton (Florida), 1994 | MR | Zbl

[2] Volkov E. A., “Priblizhennoe konformnoe otobrazhenie blochnym metodom nekotorykh mnogougolnikov na polosu”, Zh. vychisl. matem. i matem. fiz., 27:8 (1987), 1166–1175 | MR

[3] Volkov E. A., “Priblizhennoe konformnoe otobrazhenie blochnym metodom kruga s mnogougolnym otverstiem na koltso”, Zh. vychisl. matem. i matem. fiz., 28:6 (1988), 835–841 | MR

[4] Volkov E. A., “Vysokotochnye prakticheskie rezultaty konformnykh otobrazhenii blochnym metodom odnosvyaznykh i dvusvyaznykh oblastei”, Tr. MIAN SSSR, 181, M., 1988, 40–67 | MR

[5] Volkov E. A., Kornoukhov A. K., Yakovleva E. A., “Eksperimentalnoe issledovanie blochnogo metoda resheniya uravneniya Laplasa na mnogougolnikakh”, Zh. vychisl. matem. i matem. fiz., 38:9 (1998), 1544–1552 | MR | Zbl

[6] Volkov E. A., “O priblizhennom konformnom otobrazhenii blochnym metodom mnogougolnika na pryamougolnik”, Tr. MIRAN, 219, M., 1997, 115–124 | MR | Zbl

[7] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN SSSR, 77, M., 1965, 113–142 | Zbl

[8] Volkov E. A., “Eksponentsialno skhodyaschiisya metod resheniya uravneniya Laplasa na mnogougolnikakh”, Matem. sb., 109:3 (1979), 323–354 | MR | Zbl

[9] Volkov E. A., “Priblizhennoe reshenie blochnym metodom uravneniya Laplasa na mnogougolnikakh pri analiticheskikh smeshannykh kraevykh usloviyakh”, Tr. MIRAN, 201, M., 1992, 165–185 | Zbl

[10] Volkov E. A., “O priblizhennom konformnom otobrazhenii blochnym metodom dvusvyaznogo mnogougolnika na koltso”, Tr. MIRAN, 214, M., 1997, 145–163 | MR | Zbl

[11] Bakhvalov N. S., Chislennye metody, Ch. I, Nauka, M., 1973 | MR | Zbl

[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR