@article{ZVMMF_1999_39_7_a8,
author = {E. A. Volkov and A. K. Kornoukhov},
title = {An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1142--1150},
year = {1999},
volume = {39},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/}
}
TY - JOUR AU - E. A. Volkov AU - A. K. Kornoukhov TI - An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 1142 EP - 1150 VL - 39 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/ LA - ru ID - ZVMMF_1999_39_7_a8 ER -
%0 Journal Article %A E. A. Volkov %A A. K. Kornoukhov %T An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1999 %P 1142-1150 %V 39 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/ %G ru %F ZVMMF_1999_39_7_a8
E. A. Volkov; A. K. Kornoukhov. An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 7, pp. 1142-1150. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a8/
[1] Volkov E. A., Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press Inc., Boca Raton (Florida), 1994 | MR | Zbl
[2] Volkov E. A., “Priblizhennoe konformnoe otobrazhenie blochnym metodom nekotorykh mnogougolnikov na polosu”, Zh. vychisl. matem. i matem. fiz., 27:8 (1987), 1166–1175 | MR
[3] Volkov E. A., “Priblizhennoe konformnoe otobrazhenie blochnym metodom kruga s mnogougolnym otverstiem na koltso”, Zh. vychisl. matem. i matem. fiz., 28:6 (1988), 835–841 | MR
[4] Volkov E. A., “Vysokotochnye prakticheskie rezultaty konformnykh otobrazhenii blochnym metodom odnosvyaznykh i dvusvyaznykh oblastei”, Tr. MIAN SSSR, 181, M., 1988, 40–67 | MR
[5] Volkov E. A., Kornoukhov A. K., Yakovleva E. A., “Eksperimentalnoe issledovanie blochnogo metoda resheniya uravneniya Laplasa na mnogougolnikakh”, Zh. vychisl. matem. i matem. fiz., 38:9 (1998), 1544–1552 | MR | Zbl
[6] Volkov E. A., “O priblizhennom konformnom otobrazhenii blochnym metodom mnogougolnika na pryamougolnik”, Tr. MIRAN, 219, M., 1997, 115–124 | MR | Zbl
[7] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN SSSR, 77, M., 1965, 113–142 | Zbl
[8] Volkov E. A., “Eksponentsialno skhodyaschiisya metod resheniya uravneniya Laplasa na mnogougolnikakh”, Matem. sb., 109:3 (1979), 323–354 | MR | Zbl
[9] Volkov E. A., “Priblizhennoe reshenie blochnym metodom uravneniya Laplasa na mnogougolnikakh pri analiticheskikh smeshannykh kraevykh usloviyakh”, Tr. MIRAN, 201, M., 1992, 165–185 | Zbl
[10] Volkov E. A., “O priblizhennom konformnom otobrazhenii blochnym metodom dvusvyaznogo mnogougolnika na koltso”, Tr. MIRAN, 214, M., 1997, 145–163 | MR | Zbl
[11] Bakhvalov N. S., Chislennye metody, Ch. I, Nauka, M., 1973 | MR | Zbl
[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR