A combined method for variational inequalities with monotone operators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 7, pp. 1091-1097 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_7_a4,
     author = {I. V. Konnov},
     title = {A combined method for variational inequalities with monotone operators},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1091--1097},
     year = {1999},
     volume = {39},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a4/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - A combined method for variational inequalities with monotone operators
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1091
EP  - 1097
VL  - 39
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a4/
LA  - ru
ID  - ZVMMF_1999_39_7_a4
ER  - 
%0 Journal Article
%A I. V. Konnov
%T A combined method for variational inequalities with monotone operators
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1091-1097
%V 39
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a4/
%G ru
%F ZVMMF_1999_39_7_a4
I. V. Konnov. A combined method for variational inequalities with monotone operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 7, pp. 1091-1097. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a4/

[1] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[2] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozhenie k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR

[3] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program., 48:2 (1990), 161–220 | DOI | MR | Zbl

[4] Bakushinskii A. B., Polyak B. T., “O reshenii variatsionnykh neravenstv”, Dokl. AN SSSR, 219:5 (1974), 1038–1041

[5] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[6] Bruck R., “On weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space”, J. Math. Analys. and Appl., 61:1 (1977), 159–164 | DOI | MR | Zbl

[7] Martinet B., “Regularization d'inéquations variationnelles par approximations successives”, Rev. Franz. Inform. Rech. Operat. Ser. R-3, 4 (1970), 154–159 | MR

[8] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898 | DOI | MR | Zbl

[9] Tseng P., “On linear convergence of iterative methods for the variational inequality problem”, J. Comput. and Appl. Math., 60:1–2 (1995), 237–252 | DOI | MR | Zbl

[10] Lions P. L., Mercier B., “Splitting algorithms for the sum of two monotone operators”, SIAM J. Numer. Analys., 16:6 (1979), 964–979 | DOI | MR | Zbl

[11] Passty G. B., “Ergodic convergence to zero of the sum of two monotone operators in Hilbert space”, J. Math. Analys. and Appl., 72:2 (1979), 383–390 | DOI | MR | Zbl

[12] Konnov I. V., “Kombinirovannye relaksatsionnye metody dlya poiska tochek ravnovesiya i resheniya smezhnykh zadach”, Izv. vuzov. Matematika, 1993, no. 2, 46–53 | MR | Zbl

[13] Konnov I. V., “A combined relaxation method for variational inequalities with nonlinear constraints”, Math. Program., 80:2 (1998), 239–252 | DOI | MR | Zbl

[14] Konnov I. V., “A class of combined iterative methods for solving variational inequalities”, J. Optimizat. Theory and Appl., 94:3 (1997), 677–693 | DOI | MR | Zbl

[15] Konnov I. V., “Uskorenie skhodimosti kombinirovannogo relaksatsionnogo metoda”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 53–60 | MR | Zbl