Construction of an approximation to the normal solution to a Fredholm equation of the second kind on the spectrum
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 7, pp. 1085-1090 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_7_a3,
     author = {B. Aliev},
     title = {Construction of an approximation to the normal solution to a {Fredholm} equation of the second kind on the spectrum},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1085--1090},
     year = {1999},
     volume = {39},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a3/}
}
TY  - JOUR
AU  - B. Aliev
TI  - Construction of an approximation to the normal solution to a Fredholm equation of the second kind on the spectrum
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1085
EP  - 1090
VL  - 39
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a3/
LA  - ru
ID  - ZVMMF_1999_39_7_a3
ER  - 
%0 Journal Article
%A B. Aliev
%T Construction of an approximation to the normal solution to a Fredholm equation of the second kind on the spectrum
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1085-1090
%V 39
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a3/
%G ru
%F ZVMMF_1999_39_7_a3
B. Aliev. Construction of an approximation to the normal solution to a Fredholm equation of the second kind on the spectrum. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 7, pp. 1085-1090. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_7_a3/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] Aliev B., “Regulyariziruyuschie algoritmy dlya nakhozhdeniya ustoichivogo normalnogo resheniya uravneniya II roda na spektre”, Zh. vychisl. matem. i matem. fiz., 10:6 (1970), 569–574 | Zbl

[3] Aliev B., “Otsenka metoda regulyarizatsii dlya integralnykh uravnenii II roda na spektre”, Zh. vychisl. matem. i matem. fiz., 11:2 (1971), 505–510

[4] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 2, Fizmatgiz, M., 1962

[5] Saadabaev A., Metody resheniya integralnykh uravnenii pervogo roda, Izd-vo KGU, Frunze, 1985

[6] Petrovskii I. G., Lektsii po teorii integralnykh uravnenii, Nauka, M., 1965 | MR

[7] Morozov V. A., “O printsipe nevyazki pri reshenii operatornykh uravnenii metodom regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 8:2 (1968), 295–309 | Zbl

[8] Goncharskii A. V., Leonov A. S., Yagola A. G., “Obobschennyi printsip nevyazki”, Zh. vychisl. matem. i matem. fiz., 10:6 (1970), 569–574