Iterative methods for computing weighted minimum-length least squares solution with a singular weight matrix
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 6, pp. 882-896 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_6_a2,
     author = {E. F. Galba},
     title = {Iterative methods for computing weighted minimum-length least squares solution with a singular weight matrix},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {882--896},
     year = {1999},
     volume = {39},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_6_a2/}
}
TY  - JOUR
AU  - E. F. Galba
TI  - Iterative methods for computing weighted minimum-length least squares solution with a singular weight matrix
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 882
EP  - 896
VL  - 39
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_6_a2/
LA  - ru
ID  - ZVMMF_1999_39_6_a2
ER  - 
%0 Journal Article
%A E. F. Galba
%T Iterative methods for computing weighted minimum-length least squares solution with a singular weight matrix
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 882-896
%V 39
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_6_a2/
%G ru
%F ZVMMF_1999_39_6_a2
E. F. Galba. Iterative methods for computing weighted minimum-length least squares solution with a singular weight matrix. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 6, pp. 882-896. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_6_a2/

[1] Joshi V. N., “A note on the solution of rectangular linear systems by iteration”, SIAM Rev., 12:3 (1970), 463–466 | DOI | MR | Zbl

[2] Abraham B., Plemmons R. J., “Cones and iterative methods for best least squares solutions of linear systems”, SIAM J. Numer. Analys., 11:1 (1974), 145–154 | DOI | MR | Zbl

[3] Shvartsman Yu. P., “Iterativnyi algoritm resheniya sistem lineinykh algebraicheskikh uravnenii s pryamougolnoi matritsei”, Zh. vychisl. matem. i matem. fiz., 18:3 (1978), 754–756 | MR | Zbl

[4] Evans D. J., Li C., “Extrapolated Gauss–Seidel and SOR methods for least-squares problems”, Numer. Math., 53:4 (1988), 485–498 | DOI | MR | Zbl

[5] Dennis J. E., Jr., Steihaug T., “On the successive projections approach to least-squares problems”, SIAM J. Numer. Analys., 23:4 (1986), 717–733 | DOI | MR | Zbl

[6] Molchanov I. N., Yakovlev M. F., “Ob iteratsionnykh protsessakh resheniya odnogo klassa nesovmestnykh sistem lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 15:3 (1975), 547–558 | MR | Zbl

[7] Neumann M., Plemmons R. J., “Convergent non-negative matrices and iterative methods for consistent linear systems”, Numer. Math., 31:3 (1978), 265–279 | DOI | MR | Zbl

[8] Morozov B. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[9] Mechenov A. S., “O chastichno priblizhennykh sistemakh lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 31:6 (1991), 790–798 | MR

[10] Meleshko V. I., “Primenenie rekurrentnykh optimalnykh otsenok s psevdoobrascheniem v zadachakh identifikatsii”, Avtomatika i telemekhan., 1978, no. 9, 79–89 | MR | Zbl

[11] Ward J. F., Boullion T. L., Lewis T. O., “Weighted pseudoinverses with singular weights”, SIAM J. Appl. Math., 21:3 (1971), 480–482 | DOI | MR | Zbl

[12] Moore E. H., “On the resiprocal of the general algebraic matrics”, Abstract Bull. Amer. Math. Soc., 26 (1920), 394–395

[13] Penrose R., “A generalized inverse for matrices”, Proc. Cambridge Philos. Soc., 51:3 (1955), 406–413 | DOI | MR | Zbl

[14] Bellman P., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR | Zbl

[15] Ikramov Kh. D., “Ob algebraicheskikh svoistvakh klassov psevdoperestanovochnykh i $H$-samosopryazhennykh matrits”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 155–169 | MR

[16] Galba E. F., “Vzveshennoe psevdoobraschenie matrits s vyrozhdennymi vesami”, Ukr. matem. zhurnal, 46:10 (1994), 1323–1327 | MR | Zbl

[17] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977 | MR

[18] Markus M., Mink X., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[19] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[20] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[21] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[22] Galba E. F., “Iteratsionnye metody dlya vychisleniya vzveshennoi psevdoobratnoi matritsy”, Zh. vychisl. matem. i matem. fiz., 36:6 (1996), 28–39 | MR | Zbl

[23] Elden L., “A weighted pseudoinverse, generalized singular values and constrained least squares problems”, BIT, 22:4 (1982), 487–502 | DOI | MR | Zbl

[24] Louson Ch., Khenson P., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR

[25] Zhukovskii E. L., Liptser P. Sh., “O rekurrentnom sposobe vychisleniya normalnykh reshenii lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 843–857

[26] Golub G. H., “Some modified eigenvalue problems”, SIAM Rev., 15:2 (1973), 318–334 | DOI | MR | Zbl

[27] Golub G. H., von Matt V., “Quadratically constrained least squares and quadratic problems”, Numer. Math., 59:6 (1991), 561–580 | DOI | MR | Zbl