Stability analysis of the minimum spanning tree problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 5, pp. 770-778 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_5_a6,
     author = {E. N. Gordeev},
     title = {Stability analysis of the minimum spanning tree problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {770--778},
     year = {1999},
     volume = {39},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a6/}
}
TY  - JOUR
AU  - E. N. Gordeev
TI  - Stability analysis of the minimum spanning tree problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 770
EP  - 778
VL  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a6/
LA  - ru
ID  - ZVMMF_1999_39_5_a6
ER  - 
%0 Journal Article
%A E. N. Gordeev
%T Stability analysis of the minimum spanning tree problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 770-778
%V 39
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a6/
%G ru
%F ZVMMF_1999_39_5_a6
E. N. Gordeev. Stability analysis of the minimum spanning tree problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 5, pp. 770-778. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a6/

[1] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58 (1995), 169–190 | DOI | MR | Zbl

[2] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 66–72 | MR | Zbl

[3] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Probl. kibernetiki, 35, Nauka, M., 1979, 169–185 | MR

[4] Leontev V. K., Gordeev E. N., “Kachestvennoe issledovanie traektornykh zadach”, Kibernetika, 1986, no. 5, 82–90 | MR

[5] Leontev V. K., Ustoichivost reshenii v diskretnykh ekstremalnykh zadachakh, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs RAN, M., 1981

[6] Gordeev E. N., “Algoritmy polinomialnoi slozhnosti dlya vychisleniya radiusa ustoichivosti v dvukh klassakh traektornykh zadach”, Zh. vychisl. matem. i matem. fiz., 27:7 (1987), 984–992 | MR

[7] Gordeev E. N., “Ustoichivost reshenii v zadache o kratchaishem puti na grafe”, Diskretnaya matem., 1:3 (1989), 39–46 | MR | Zbl

[8] Tarjan R. E., “Sensitivity analysis of minimum spanning trees and shortest paths trees”, Inf. Proc. Letts, 14:1 (1982), 30–31 | DOI | MR

[9] Fredericson G. N., Solis-Oba R., “Increasing the weight of minimum spanning trees”, Proc. 7-th Ann. ACM-SIAM Symp. on Discrete Algorithms (Amsterdam, 1996), 539–546 | MR

[10] Fredericson G. N., Solis-Oba R., “Efficient algorithms for robustness in matroid optimization”, Proc. 8-th Annual ACM-SIAM Symp. on Discrete Algorithms (Amsterdam, 1997), 659–668 | MR

[11] Cheng E., Cunningham W. H., “A faster algorithm for computing the strength of a network”, Inf. Proc. Letts, 49 (1994), 209–212 | DOI | Zbl

[12] Welsh D. J. A., Matroid theory, Acad. Press, London etc., 1976 | MR | Zbl