A new interval approach to global optimization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 5, pp. 759-769 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interval methods are iterative methods capable of solving the general nonlinear programming problem globally, providing infallible bounds both on the optimum (optima) and the corresponding solution coordinates. However, their computational complexity grows rapidly with the dimension of the problem and the size of the search domain. In this paper, a new interval approach to solving the global optimization problem is suggested, which permits the development of interval optimization methods of improved efficiency. It is based on the following ideas. First, every nonlinear function $f_i(x)$ involved in the solution scheme chosen is transformed into:semiseparable form (sum of terms). Each term of this form is either a function $f_{ij}(x_j)$ of a single variable or a product $x_kx_i$ of two variables. These terms are then enclosed by corresponding linear interval functions. Thus, at each iteration of the computation process, a specific linear interval system is obtained where only the rightnand side involves intervals while the known interval methods are based on a linear system with interval coefficients. The former system is much easier to solve which accounts for the considerable numerical efficiency of the new approach.
@article{ZVMMF_1999_39_5_a5,
     author = {L. V. Kolev},
     title = {A new interval approach to global optimization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {759--769},
     year = {1999},
     volume = {39},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a5/}
}
TY  - JOUR
AU  - L. V. Kolev
TI  - A new interval approach to global optimization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 759
EP  - 769
VL  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a5/
LA  - en
ID  - ZVMMF_1999_39_5_a5
ER  - 
%0 Journal Article
%A L. V. Kolev
%T A new interval approach to global optimization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 759-769
%V 39
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a5/
%G en
%F ZVMMF_1999_39_5_a5
L. V. Kolev. A new interval approach to global optimization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 5, pp. 759-769. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a5/

[1] Ratscek H., Rokne J., New computer methods for global optimization, Horwood, Chichester, 1988

[2] Hansen E., Global optimization using1 interval analysis, Marcel Dekker, Inc., New York etc., 1992 | MR | Zbl

[3] Eriksson J., Lindstrom P., “A parallel interval method implementation for global optimization using dynamic load balancing”, Reliable Comput., 1:6 (1995), 77–91 | DOI | Zbl

[4] Kolev L., Interval methods for circuit analysis, World Scient., Singapore, New Jersey, 1993 | MR | Zbl

[5] Zuhe S., Wolfe M., “On interval enclosures using slope arithmetic”, Appl. Math. Comput., 39 (1990), 89–105 | DOI | MR | Zbl

[6] Amer. Math. Biophys., 5 (1963), 55–59 | MR | MR

[7] Yamamura K., “An algorithm for representing functions of many variables by superpositions of functions of one variable and addition”, IEEE Trans. Circuits Systems 1, 43:3 (1996), 338–340 | DOI | MR

[8] Mladenov V., Kolev L., Third Intemat. Conf. Electronics, Circuits and Systems (ICECS'96) (Rodos, Greece, 13–16 October, 1996)

[9] Kolev L., Mladenov V., “Use of interval slopes in implementing an interval method for global non-linear DC circuits analysis”, Intemat. J. Circuit Theory and Applic., 25 (1997), 37–42 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[10] Kolev L., “Use of interval slopes for the irrational part of factorable functions”, Reliable Comput., 3 (1997), 83–93 | DOI | MR | Zbl

[11] Morgan A. P., Shapiro V., “Box bisection for solving second-degree systems and the problem of clustering”, ACM Trans. Math. Software, 13 (1987), 152–167 | DOI | MR | Zbl