Computation of unsteady flows with a scheme of improved accuracy
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 5, pp. 850-864 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_5_a13,
     author = {S. A. Velichko and Yu. B. Lifshits and I. A. Solntsev},
     title = {Computation of unsteady flows with a scheme of improved accuracy},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {850--864},
     year = {1999},
     volume = {39},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/}
}
TY  - JOUR
AU  - S. A. Velichko
AU  - Yu. B. Lifshits
AU  - I. A. Solntsev
TI  - Computation of unsteady flows with a scheme of improved accuracy
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 850
EP  - 864
VL  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/
LA  - ru
ID  - ZVMMF_1999_39_5_a13
ER  - 
%0 Journal Article
%A S. A. Velichko
%A Yu. B. Lifshits
%A I. A. Solntsev
%T Computation of unsteady flows with a scheme of improved accuracy
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 850-864
%V 39
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/
%G ru
%F ZVMMF_1999_39_5_a13
S. A. Velichko; Yu. B. Lifshits; I. A. Solntsev. Computation of unsteady flows with a scheme of improved accuracy. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 5, pp. 850-864. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/

[1] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–397 | DOI | MR

[2] Radvogin Yu. B., Kvazimonotonnye mnogomernye raznostnye skhemy vtorogo poryadka tochnosti, Preprint No 19, IPMatem. AN SSSR, M., 1991, 23 pp.

[3] Harten A., “ENO chemes with subcell resolution”, J. Comput. Phys., 83 (1989), 148–184 | DOI | MR | Zbl

[4] Kraiko A. H., “Nekotorye voprosy postroeniya chislennykh algoritmov dlya rascheta techeniya idealnogo gaza”, Konstruirovanie algoritmov i reshenie zadach matem. fiz., IPMatem. AN SSSR, M., 1987, 33–55

[5] Rodionov A. V., “Monotonnaya skhema vtorogo poryadka approksimatsii dlya skvoznogo scheta neravnovesnykh techenii”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 585–593 | MR | Zbl

[6] Roe P. L., “Approximate Riemman solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[7] Lifshits Yu. B., Sorokin A. M., Shagaev A. A., Plotskii A. I., Metody rascheta obtekaniya letatelnykh apparatov pri transzvukovykh skorostyakh. Ch. I, Obzor TsAGI No 685, ONTI TsAGI, M., 1988

[8] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 49:3 (1959), 271–306 | MR

[9] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[10] Ivanov M. Ya., “K raschetu techeniya gaza v udarnoi trube peremennogo secheniya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1970, no. 3, 162–166

[11] Huynh H. T., Accurate upwind schemes for the Euler equations, AIAA Paper, 1995, No 95-1737-Cp.

[12] Harten A., Lax P. D., Van Leer B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25:1 (1983), 39–61 | DOI | MR

[13] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[14] Roe P. L., “Some contributions to the modelling of discontinuous flows”, Large-scale computations in fluid mechanics, Part 2, Lect. Appl. Math., 22, Amer. Math. Soc., Providence, RI, 1985, 163–194 | MR

[15] Van Leer B., “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI

[16] Munz C. D., “On the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77 (1988), 18–39 | DOI | MR | Zbl

[17] Harten A., Osher S., “Uniformly hogh-order accurate nonoscillatory schemes”, Part I, SIAM J. Numer. Analys., 24 (1987), 279–309 | DOI | MR | Zbl

[18] Tillyaeva N. I., “Obobschenie modifitsirovannoi skhemy S. K. Godunova na proizvolnye neregulyarnye setki”, Uch. zap. TsAGI, 17:2 (1986), 18–26