@article{ZVMMF_1999_39_5_a13,
author = {S. A. Velichko and Yu. B. Lifshits and I. A. Solntsev},
title = {Computation of unsteady flows with a scheme of improved accuracy},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {850--864},
year = {1999},
volume = {39},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/}
}
TY - JOUR AU - S. A. Velichko AU - Yu. B. Lifshits AU - I. A. Solntsev TI - Computation of unsteady flows with a scheme of improved accuracy JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 850 EP - 864 VL - 39 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/ LA - ru ID - ZVMMF_1999_39_5_a13 ER -
%0 Journal Article %A S. A. Velichko %A Yu. B. Lifshits %A I. A. Solntsev %T Computation of unsteady flows with a scheme of improved accuracy %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1999 %P 850-864 %V 39 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/ %G ru %F ZVMMF_1999_39_5_a13
S. A. Velichko; Yu. B. Lifshits; I. A. Solntsev. Computation of unsteady flows with a scheme of improved accuracy. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 5, pp. 850-864. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_5_a13/
[1] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–397 | DOI | MR
[2] Radvogin Yu. B., Kvazimonotonnye mnogomernye raznostnye skhemy vtorogo poryadka tochnosti, Preprint No 19, IPMatem. AN SSSR, M., 1991, 23 pp.
[3] Harten A., “ENO chemes with subcell resolution”, J. Comput. Phys., 83 (1989), 148–184 | DOI | MR | Zbl
[4] Kraiko A. H., “Nekotorye voprosy postroeniya chislennykh algoritmov dlya rascheta techeniya idealnogo gaza”, Konstruirovanie algoritmov i reshenie zadach matem. fiz., IPMatem. AN SSSR, M., 1987, 33–55
[5] Rodionov A. V., “Monotonnaya skhema vtorogo poryadka approksimatsii dlya skvoznogo scheta neravnovesnykh techenii”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 585–593 | MR | Zbl
[6] Roe P. L., “Approximate Riemman solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[7] Lifshits Yu. B., Sorokin A. M., Shagaev A. A., Plotskii A. I., Metody rascheta obtekaniya letatelnykh apparatov pri transzvukovykh skorostyakh. Ch. I, Obzor TsAGI No 685, ONTI TsAGI, M., 1988
[8] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 49:3 (1959), 271–306 | MR
[9] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[10] Ivanov M. Ya., “K raschetu techeniya gaza v udarnoi trube peremennogo secheniya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1970, no. 3, 162–166
[11] Huynh H. T., Accurate upwind schemes for the Euler equations, AIAA Paper, 1995, No 95-1737-Cp.
[12] Harten A., Lax P. D., Van Leer B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25:1 (1983), 39–61 | DOI | MR
[13] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77
[14] Roe P. L., “Some contributions to the modelling of discontinuous flows”, Large-scale computations in fluid mechanics, Part 2, Lect. Appl. Math., 22, Amer. Math. Soc., Providence, RI, 1985, 163–194 | MR
[15] Van Leer B., “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI
[16] Munz C. D., “On the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77 (1988), 18–39 | DOI | MR | Zbl
[17] Harten A., Osher S., “Uniformly hogh-order accurate nonoscillatory schemes”, Part I, SIAM J. Numer. Analys., 24 (1987), 279–309 | DOI | MR | Zbl
[18] Tillyaeva N. I., “Obobschenie modifitsirovannoi skhemy S. K. Godunova na proizvolnye neregulyarnye setki”, Uch. zap. TsAGI, 17:2 (1986), 18–26