A finite difference scheme for quasi-averaged equations of one-dimensional viscous heat-conducting gas flow with nonsmooth data
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 592-611 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_4_a7,
     author = {A. A. Amosov and A. A. Zlotnik},
     title = {A finite difference scheme for quasi-averaged equations of one-dimensional viscous heat-conducting gas flow with nonsmooth data},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {592--611},
     year = {1999},
     volume = {39},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a7/}
}
TY  - JOUR
AU  - A. A. Amosov
AU  - A. A. Zlotnik
TI  - A finite difference scheme for quasi-averaged equations of one-dimensional viscous heat-conducting gas flow with nonsmooth data
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 592
EP  - 611
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a7/
LA  - ru
ID  - ZVMMF_1999_39_4_a7
ER  - 
%0 Journal Article
%A A. A. Amosov
%A A. A. Zlotnik
%T A finite difference scheme for quasi-averaged equations of one-dimensional viscous heat-conducting gas flow with nonsmooth data
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 592-611
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a7/
%G ru
%F ZVMMF_1999_39_4_a7
A. A. Amosov; A. A. Zlotnik. A finite difference scheme for quasi-averaged equations of one-dimensional viscous heat-conducting gas flow with nonsmooth data. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 592-611. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a7/

[1] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[3] Amosov A. A., Zlotnik A. A., “O kvaziosrednennykh uravneniyakh odnomernogo dvizheniya vyazkoi barotropnoi sredy s bystroostsilliruyuschimi dannymi”, Zh. vychisl. matem. i matem. fiz., 36:2 (1996), 87–110 | MR | Zbl

[4] Amosov A. A., Zlotnik A. A., “Otsenka pogreshnosti kvaziosredneniya uravnenii dvizheniya vyazkoi barotropnoi sredy s bystroostsilliruyuschimi dannymi”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 111–128 | MR | Zbl

[5] Amosov A. A., Zlotnik A. A., “Obosnovanie kvaziosredneniya uravnenii odnomernogo dvizheniya vyazkogo teploprovodnogo gaza s bystro ostsilliruyuschimi svoistvami”, Dokl. RAN, 354:4 (1997), 439–442 | MR | Zbl

[6] Amosov A. A., Zlotnik A. A., “Semidiscrete method for solving quasi-averaged equations of the one-dimensional motion of a viscous heat-conducting gas”, Russ. J. Numer. Math. Modelling, 12:3 (1997), 171–197 | DOI | MR | Zbl

[7] Amosov A. A., Zlotnik A. A., “O kvaziosrednenii sistemy uravnenii odnomernogo dvizheniya vyazkogo teploprovodnogo gaza s bystroostsilliruyuschimi dannymi”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1204–1219 | MR | Zbl

[8] Amosov A. A., Zlotnik A. A., “A study of a finite-difference method for the one-dimensional viscous heat-conductive gas flow equations. Part 1: A priori estimates and stability”, Soviet J. Numer. Analys. Math. Modelling, 2:3 (1987), 159–178 | DOI | MR | Zbl

[9] Amosov A. A., Zlotnik A. A., “A study of a finite-difference method for the one-dimensional viscous heat-conductive gas flow equations. Part 2: Error estimates and realization”, Soviet J. Numer. Analys. Math. Modelling, 2:4 (1987), 239–258 | DOI | MR | Zbl

[10] Amosov A. A., Zlotnik A. A., “Raznostnaya skhema na neravnomernoi setke dlya uravnenii odnomernoi magnitnoi gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 29:4 (1989), 521–534 | MR | Zbl

[11] Amosov A. A., Titov D. A., Zlotnik A. A., “Finite-difference scheme for quasi-averaged equations of one-dimensional motion of a viscous barotropic medium”, Russ. J. Numer. Analys. Math. Modelling, 11:6 (1996), 445–475 | DOI | MR | Zbl

[12] Amosov A. A., Zlotnik A. A., “Poludiskretnyi metod resheniya uravnenii odnomernogo dvizheniya neodnorodnogo vyazkogo teploprovodnogo gaza s negladkimi dannymi”, Izv. vuzov. Matematika, 1997, no. 4, 3–19 | MR | Zbl

[13] Rysbaev B. R., “Ustoichivost raznostnoi skhemy dlya teploprovodnogo gaza s kontaktnym razryvom”, Primenenie metodov funkts. analiza k neklassich. ur-niyam matem. fiz., Novosibirsk, 1988, 143–149 | MR

[14] Zarnowski R., Hoff D., “A finite-difference scheme for the Navier–Stokes equations of one-dimensional, isentropic, compressible flow”, SIAM J. Numer. Analys., 28:1 (1991), 77–112 | DOI | MR

[15] Zhao J., “Convergence and error-bound analysis for mixed problems in compressible flow”, Numer. Funct. Analys. and Optimizat., 15:1–2 (1994), 187–198 | DOI | MR | Zbl

[16] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[18] Amosov A. A., Zlotnik A. A., “Raznostnaya skhema dlya uravnenii odnomernogo dvizheniya vyazkogo barotropnogo gaza”, Vychisl. protsessy i sistemy, 4, Nauka, M., 1986, 192–218 | MR