Convergence rates in regularization for Hammerstein equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 561-566
Voir la notice de l'article provenant de la source Math-Net.Ru
A theoretical analysis of convergence rates of the regularized solutions for the operator equation of Hammerstein type $x+F_2F_1(x)=f$ in Banach spaces is given. They are estimated under a weaker condition than in my recent paper.
@article{ZVMMF_1999_39_4_a3,
author = {B. Nguyen},
title = {Convergence rates in regularization for {Hammerstein} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {561--566},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a3/}
}
TY - JOUR AU - B. Nguyen TI - Convergence rates in regularization for Hammerstein equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 561 EP - 566 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a3/ LA - en ID - ZVMMF_1999_39_4_a3 ER -
B. Nguyen. Convergence rates in regularization for Hammerstein equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 561-566. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a3/