Convergence rates in regularization for Hammerstein equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 561-566 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theoretical analysis of convergence rates of the regularized solutions for the operator equation of Hammerstein type $x+F_2F_1(x)=f$ in Banach spaces is given. They are estimated under a weaker condition than in my recent paper.
@article{ZVMMF_1999_39_4_a3,
     author = {B. Nguyen},
     title = {Convergence rates in regularization for {Hammerstein} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {561--566},
     year = {1999},
     volume = {39},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a3/}
}
TY  - JOUR
AU  - B. Nguyen
TI  - Convergence rates in regularization for Hammerstein equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 561
EP  - 566
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a3/
LA  - en
ID  - ZVMMF_1999_39_4_a3
ER  - 
%0 Journal Article
%A B. Nguyen
%T Convergence rates in regularization for Hammerstein equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 561-566
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a3/
%G en
%F ZVMMF_1999_39_4_a3
B. Nguyen. Convergence rates in regularization for Hammerstein equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 561-566. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a3/

[1] Brezis H., Browder F., “Nonlinear integral equations and systems of Hammerstein's type”, Advances Math., 10 (1975), 115–144 | DOI | MR

[2] Tartar L., Topics in nonlinear analysis, Publs d'Orsey Univ., Paris, 1978 | MR

[3] Vaclav D., Monotone operators and applications in control and network theory, Elsevier, Amsterdam etc., 1979 | MR | Zbl

[4] Nguyen Buong, “On solutions of Hammerstein's equations type in Banach spaces”, J. Math. Comput. and Math. Phys. USSR, 25:8 (1985), 187–190

[5] Vainberg M. M., Variational method and method of monotone operators, Nauka, M., 1972 | MR | Zbl

[6] Nguyen Buong, “On approximate solution for operator equations of Hammerstein type”, J. Comput. and Appl. Math., 75 (1996), 77–86 | DOI | MR | Zbl

[7] Kumar S., “Superconvergence of a collocation-type method for Hammerstein equations”, IMA J. Numer. Analys., 7 (1987), 313–325 | DOI | MR | Zbl

[8] Nguyen Buong, “On ill-posed problems in Banach spaces”, The Southeast Asian Bull. Math., 21 (1997), 95–103 | MR | Zbl

[9] Bakushinsky A., Goncharsky A., Ill-posed problems: Theory and applications, Kluwer Acad. Publs, Dordrecht etc., 1994 | MR