@article{ZVMMF_1999_39_4_a16,
author = {T. V. Savina},
title = {A reflection formula for the {Helmholtz} equation with the {Neumann} condition},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {681--689},
year = {1999},
volume = {39},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a16/}
}
TY - JOUR AU - T. V. Savina TI - A reflection formula for the Helmholtz equation with the Neumann condition JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 681 EP - 689 VL - 39 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a16/ LA - ru ID - ZVMMF_1999_39_4_a16 ER -
T. V. Savina. A reflection formula for the Helmholtz equation with the Neumann condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 681-689. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a16/
[1] Schwarts H. A., “Über die Integration der partiellen Differentialgleichlmg $\partial^2u/\partial x^2+\partial^2u/\partial y^2=0$ unter vorgeschriebenen Grentz- und Unstetigkeitsbedingungen”, Monatsber. Konigl. Akad. Wiss. zu Berlin, 1870, 767–795
[2] Davis P., Schwafz function and its applications, Carus Math. Monogr., 17, Math. Assoc. of America, 1979
[3] Khavinson D., Shapiro H. S., “Remarks on the reflection principle for harmonic functions”, J. d'analise math., 54 (1990), 60–76 | DOI | MR | Zbl
[4] Garabedian P., “Partial differential equations with more than two independant variables in the complex domain”, J. Math. Mech., 9:2 (1960), 241–271 | MR | Zbl
[5] Savina T. B., Sternin B. Yu., Shatalov V. E., “O formule otrazheniya dlya uravneniya Gelmgoltsa”, Radiotekhn. i elektronika, 38:2 (1993), 37–48
[6] Savina T. V., “O formule otrazheniya dlya ellipticheskikh uravnenii vysokogo poryadka”, Matem. zametki, 57:5 (1995), 732–746 | MR | Zbl
[7] Sternin B., Shatalov V., Differential equations on complex manifolds, Kluwer Acad. Publs, Dordreht etc., 1994 | MR | Zbl
[8] Ludwig D., “Exact and asymptotics solutions of the Cauchy problem”, Communs Pure and Appl. Math., 13 (1960), 473–508 | DOI | MR | Zbl
[9] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Gostekhteorizdat, M., L., 1948 | MR
[10] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl