On a class of grid approximations for nonlinear problems in plate theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 670-680 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_4_a15,
     author = {M. M. Karchevskii},
     title = {On a class of grid approximations for nonlinear problems in plate theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {670--680},
     year = {1999},
     volume = {39},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a15/}
}
TY  - JOUR
AU  - M. M. Karchevskii
TI  - On a class of grid approximations for nonlinear problems in plate theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 670
EP  - 680
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a15/
LA  - ru
ID  - ZVMMF_1999_39_4_a15
ER  - 
%0 Journal Article
%A M. M. Karchevskii
%T On a class of grid approximations for nonlinear problems in plate theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 670-680
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a15/
%G ru
%F ZVMMF_1999_39_4_a15
M. M. Karchevskii. On a class of grid approximations for nonlinear problems in plate theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 670-680. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a15/

[1] Astrakhantsev G. P., “O smeshannom metode konechnykh elementov v zadachakh teorii obolochek”, Zh. vychisl. matem. i matem. fiz., 29:10 (1989), 1492–1504 | MR | Zbl

[2] Karchevskii M. M., “Smeshanmyi metod konechnykh elementov dlya nelineinykh zadach teorii plastin”, Izv. vuzov. Matematika, 1992, no. 7, 18–23

[3] Zabotina L. Sh., Otsenki tochnosti smeshannykh skhem konechnykh elementov dlya nelineinykh zadach teorii obolochek, Dep. v VINITI 14.04.95, No 1041-V95

[4] Karchevsky M. M., Zabotina L. Sh., “On one class of mixed element schemes for nonlinear shell theory problems”, Matem. zametki, 2:2 (1995), 121–139

[5] Zabotina L. Sh., O skhodimosti smeshannykh skhem konechnykh elementov dlya nelineinykh zadach teorii obolochek, Dep. v VINITI 12.07.95, No 2142-V95

[6] Zabotina L. Sh., Karchevskii M. M., “O smeshannykh skhemakh konechnykh elementov dlya nelineinykh zadach teorii obolochek”, Izv. vuzov. Matematika, 1996, no. 1, 45–52 | MR

[7] Karchevskii M. M., Zabotina L. Sh., Smeshannyi metod konechnykh elementov dlya nelineinykh zadach teorii obolochek, Dep. v VINITI 07.04.93, No 877-V93

[8] Mushtari Kh. M., Galimov K. Z., Nelineinaya teoriya uprugikh obolochek, Tatknigoizdat, Kazan, 1957

[9] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. ur-niya, 27:7 (1991), 1196–1203 | MR

[10] Syarle F., Metod Konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[11] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatgiz, M., 1959 | MR

[12] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl

[13] Dautov R. Z., “Otsenki tochnosti skhem MKE na osnove pryamougolnykh elementov s chislennym integrirovaniem dlya obolochek slozhnoi geometrii”, Issl. po teorii obolochek, 27, KNTs RAN, Kazan, 1992, 22–36