@article{ZVMMF_1999_39_4_a10,
author = {J. F. Ahner and V. V. Dyakin and V. Ya. Raevskii and R. Ritter},
title = {On series solutions of the magnetostatic integral equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {630--637},
year = {1999},
volume = {39},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a10/}
}
TY - JOUR AU - J. F. Ahner AU - V. V. Dyakin AU - V. Ya. Raevskii AU - R. Ritter TI - On series solutions of the magnetostatic integral equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 630 EP - 637 VL - 39 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a10/ LA - en ID - ZVMMF_1999_39_4_a10 ER -
%0 Journal Article %A J. F. Ahner %A V. V. Dyakin %A V. Ya. Raevskii %A R. Ritter %T On series solutions of the magnetostatic integral equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1999 %P 630-637 %V 39 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a10/ %G en %F ZVMMF_1999_39_4_a10
J. F. Ahner; V. V. Dyakin; V. Ya. Raevskii; R. Ritter. On series solutions of the magnetostatic integral equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 4, pp. 630-637. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_4_a10/
[1] Friedman M. J., “Mathematical study of nonlinear singular integral magnetic field equation”, SIAM J. Appl. Math., 39 (1980), 14–20 | DOI | MR | Zbl
[2] Raevskii V. Ya., “Some properties of the potential theory operators and their applications to investigation of the basic electro-magnetostatic equation”, Theor. and Math. Phys., 100:3 (1994), 323–331 | DOI | MR
[3] Dyakin V. V., Raevskii V. Ya., “Investigation of an equation of electrophysics”, USSR Comput. Math. Math. Phys., 30:1 (1990), 213–218 | DOI | MR
[4] Ahner J. F., Dyakin V. V., Raevskii V. Ya., “Eigenvectors of the magnetostatic operator for a spheroid”, Comput. Math. Math. Phys., 36:5 (1996), 643–647 | MR | Zbl
[5] Tselnik D. S., “A bound for the remainder of the Hilbert–Schmidt series and other results on representation of solutions to the functional equation of the second kind with a self-adjoint compact operator as an infinite series”, Comput. Math. Appl., 29:10 (1995), 61–68 | DOI | MR | Zbl
[6] Gohberg I., Krein M., Introduction to the linear nonself-adjoint operator theory in Hilbert spaces, Nauka, M., 1965 | MR
[7] Reed M., Simon B., Methods of modern mathematical physics. Analysis of operators, v. 4, Acad. Press, New York, 1978 | MR | Zbl
[8] Ritter S., “The spectrum of the electrostatic integral operator for an ellipsoid”, Inverse Scattering and Potential Problems in Math. Phys., Methoden und Verfahren der math. Phys., 40, Peter Lang, Frankfurt a.M./Bern, 1994, 157–167 | MR
[9] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Chelsea, New York, 1955 | MR
[10] Walter H. G., “Lamé functions of the first kind generated by computer”, Celestial Mech., 4 (1971), 15–30 | DOI | MR | Zbl